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“The best that most of us can hope to achieve in physics
is simply to misunderstand at a deeper level.”

Wolfgang Pauli
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Resumo

A descrição teórica da gravitação teleparalela em termos de fibrados parece desencadear algumas controvérsias
entre matemáticos e f́ısicos. Acredito que o mal-entendido se deve em boa parte à falta de uma ponte entre
os conceitos matemáticos rigorosos e a aplicação real desses conceitos na f́ısica. Esta tese de mestrado busca
preencher essa lacuna e iluminar a estrutura geométrica da gravitação teleparalela.

Nenhuma familiaridade prévia com fibrados é assumida. Todas as ferramentas necessárias da área dos fibrados
são desenvolvidas desde o ińıcio, construindo os fundamentos necessários para estudar as teorias clássicas de
calibre, por um lado, e as teorias da relatividade geral modificada, por outro, com foco especial nos métodos
necessários para o estudo da gravitação teleparalela.

Usando os métodos desenvolvidos, chegamos a três conclusões principais. Em primeiro lugar, um fibrado
principal do grupo de translação é trivial. Em segundo lugar, uma derivada covariante compat́ıvel com a
métrica e livre de curvatura num espaço-tempo simplesmente-conexo induz uma tetrada ortonormal global.
Em terceiro lugar, como corolário do teorema de Geroch, um espaço-tempo simplesmente-conexo admite uma
estrutura de spin se e somente se admite uma derivada covariante compat́ıvel com a métrica e livre de curvatura.

A relevância do primeiro resultado se deve aos esforços feitos pela gravitação teleparalela para descrever a
gravitação usando um fibrado principal do grupo de translação. Nesta perspectiva, o primeiro resultado parece
nos desencorajar da missão de descrever a gravitação usando um fibrado principal do grupo de translação,
pois restringe a classe de espaços-tempos a qual o formalismo da gravitação teleparalela pode ser aplicado. O
segundo resultado, entretanto, relativiza essa obstrução motivada inteiramente pela perspectiva da gravitação
teleparalela. Finalmente, o terceiro resultado revela que a gravitação teleparalela não está proibindo grandes
classes de espaços-tempos. Sempre que os campos de espinores são defińıveis em um espaço-tempo simplesmente-
conexo, também existe uma descrição em termos da gravitação teleparalela.

As novidades deste trabalho incluem uma definição e estudo completo de fibrados afins (como uma generalização
de fibrados vetoriais), uma discussão independente e acesśıvel sobre a equivalência de derivadas covariantes e
sistemas de transporte paralelo em fibrados vetoriais, bem como de sua curvatura e holonomia.

Abstract

The bundle theoretic description of teleparallel gravity seems to spark some controversities between mathemati-
cians and physicists. I believe that the misunderstanding is to a good part due to the lack of a bridge between
the rigorous mathematical concepts and the actual application of these concepts in physics. This master’s thesis
seeks to bridge this gap and shine light on the geometric structure of teleparallel gravity.

No prior familiarity with fibre bundles is assumed. All the necessary tools from the area of fibre bundles are
developed from the ground up, laying the fundament necessary in order to study classical gauge theories on the
one hand, and theories of modified general relativity on the other hand, with special focus laid on the methods
needed for teleparallel gravity.
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Using the developed methods, we arrive at three major conclusions. First, a principal bundle of the transla-
tion group is trivial. Second, a curvature-free metric-compatible covariant derivative for a simply-connected
spacetime induces a global orthonormal frame. Third, as a corollary to Geroch’s theorem, a simply-connected
spacetime admits a spin structure if and only if it admits a curvature-free metric-compatible covariant derivative.

The relevance of the first result is due to the efforts made by teleparallel gravity to describe gravity using
a principal bundle of the translation group. In this light, the first result appears to discourage us from the
mission to describe gravity using a principal bundle of the translation group since it restricts the class of
spacetimes that the formalism of teleparallel gravity can be applied to. The second result, however, relativates
this obstruction motivated entirely from the persepective of teleparallel gravity. Finally, the third result assures
us that teleparallel gravity is not forbidding large classes of spacetimes. Whenever spinor fields are definable
on a simply-connected spacetime, there also exists a description in terms of teleparallel gravity for it.

Novelties of this work include a thorough definition and study of affine bundles (as a generalization of vector
bundles), a self-contained and accessible discussion of the equivalence of covariant derivatives and parallel
transport systems on vector bundles, as well as of their curvature and holonomy.
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1 Revision

Modern theoretical physics immensely employs abstract mathematical concepts. This trend is not a new devel-
opment. We may regard the moment that Einstein formulated his general theory of relativity in the language of
state-of-the-art differential geometry as the start of a new chapter of theoretical physics. Subsequently, quan-
tum mechanics too made great advances using methods from the field of functional analysis. In both cases,
the introduction of a new level of abstraction separated the theoretical description from the experiment while
allowing to describe a wide variety of different physical systems using the same fundamental laws. All in all,
it is a story of great success and it is far from finished. Though, whilst the abstraction allows to describe a
great variety of different physical phenomena using merely a few basic rules, it is usually not the starting point
for innovation in the field of physics. Innovation in the field of physics is brought up using a more intuitive
language, tied more closely to the real world.

In comparison to the two fundamental theories of general relativity and quantum mechanics, the classical field
theories of the other fundamental forces were formulated in terms of abstract mathematical concepts more
recently. Interestingly, the classical field theories of the fundamental forces mediated by forces share a good
extent of their mathematical structure with the theory of general relativity. The main difference is that while
classical field theories admit internal gauge degrees of freedom, general relativity does not admit internal gauge
degrees of freedom. This is due to the very construction of general relativity as a geometric theory of gravity,
bearing at its heart the experimentally uncontested assumption that the inertial and gravitational masses
coincide for all particles. This assumption is called universality.

The main goal of teleparallel gravity is to undo this geometrization and allow a description of gravity in the
absence of universality which resembles the description of the other classical field theories. In order to make
progress, we have to study the field of differential geometry with special focus laid on fibre bundles, the basis
of the mathematically descriptions of general relativity and classical field theories.

I will introduce all the necessary terminology of the field of fibre bundles. This is due to the fact that there is no
satisfactory standard reference known to me on the subject that covers all the relevant parts. I assume the reader
to be familiar with the subject of smooth manifolds. Prior familiarity with the description of general relativity
in terms of pseudo-Riemannian geometry will help to motivate some of the definitions to be introduced.

Refer to the appendix A for a collection of the most important definitions from point-set topology that we will
use throughout the work. In doubt, refer to an authoritative reference book such as [Mun14].

Throughout the text we will work with the following definition of a topological manifold:

Definition 1.1 (Topological manifold). A topological manifold is a topological space (M,OM ) such that

1. (M,OM ) is locally Euclidean of dimension d for some d ∈ N,
2. (M,OM ) is Hausdorff, and

3. one of the following equivalent conditions is met:

• (M,OM ) is second countable

• (M,OM ) is Lindelöf

• (M,OM ) is paracompact and has at most countably many connected components1

1 Introduction to Smooth Manifolds (2nd edition) by J. M. Lee, Page 30, Problem 1-5, Chapter 1, Section 5
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As such a topological manifold is also locally compact, Lindelöf, locally path connected, normal and metrisable.
Moreover, if it is connected it is also path-connected. In the case of a smooth manifold (M,OM ,AM ) (a
topological manifold (M,OM ) together with a choice of smooth atlas AM ) Whitney’s approximation theorems
assure that M is path-connected by smooth paths.

As discussed in chapter 10, what we intuitively understand as a spacetime is modelled well by a topological
manifold with some additional structure, see definition 10.1. Before discussing the physics, however, we need
to build a solid mathematical understanding of the necessary concepts. This is the purpose of the chapters 2
to 9.
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2 Fibre bundles

Loosely speaking a fibre bundle is a smooth manifold that can locally be expressed as a product of manifolds,
but in general not globally. The following definition turns this notion rigorous:

Definition 2.1 (Fibre bundle (over a smooth manifold M with typical fibre F )). Let (E,OE ,AE), (M,OM ,AM ),
(F,OF ,AF ) be three smooth manifolds and π : E →M a smooth surjective submersion.

The structure π : E →M is said to be a fibre bundle over M with typical fibre F if for any point p ∈M
there exists a neighbourhood U of p and a smooth map, called bundle chart,

α : π−1[U ] → F

such that
(π, α) : π−1(U) → U × F

is a diffeomorphism. We say that Ep := π−1 [{p}] is the fibre over p ∈M .

Definition 2.2 (Bundle atlas). Let π : E → M be a fibre bundle over M with typical fibre F . A bundle
atlas on E is a collection of bundle charts, i.e., a subset B ⊆ ⋃ {C∞(A,F ) | A ⊆ E} satisfying:

1. {π[Dom(α)] | α ∈ B} is an open cover of the base space M .

2. ∀α ∈ B : Dom(α) = π−1[π[Dom(α)]]

3. ∀α ∈ B : (π, α) : Dom(α) → π[Dom(α)]× F is a diffeomorphism

Remark 2.1 (Existence of a bundle atlas). The second part of the definition of a fibre bundle precisely guar-
antees the existence of a bundle atlas for it. In fact, it is sufficient to require the projection π : E →M to be a
smooth surjection. The existence of a bundle atlas ensures that it is a submersion.

Definition 2.3 (Transition functions of a bundle atlas). Let B be a bundle atlas of a fibre bundle π : E →M
with typical fibre F . For every two bundle charts α, β ∈ B with non-empty domain intersection Dom(α) ∩
Dom(β) ̸= ∅, we can define the transition function from α to β

ρ̃βα : π [Dom(α) ∩Dom(β)] → Diff(F ), p 7→ β|Ep
◦ α|−1

Ep
. (2.1)

The collection {ρ̃βα | α, β ∈ B} is called the collection of transition functions of the bundle atlas B.

Remark 2.2 (Transition functions of a bundle atlas satisfy cocycle conditions). The transition functions {ρ̃βα |
α, β ∈ B} of a bundle atlas B satisfy the following cocycle conditions:

∀α ∈ B : ∀p ∈ π[Dom(α)] : ρ̃αα(p) = idF , (2.2)

∀α, β, γ ∈ B : ∀p ∈ π[Dom(α)] ∩ π[Dom(β)] ∩ π[Dom(γ)] : ρ̃γα(p) = ρ̃γβ(p) ◦ ρ̃βα(p). (2.3)

Theorem 2.1 (Equipping a set with the structure of a fibre bundle using a bundle atlas). Suppose we are
given a set E, two smooth manifolds (M,OM ,AM ) and (F,OF ,AF ), and a surjective map π : E →M .
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π

Uα × F

p
Uα

π−1[{p}]

π−1 [Uα]

(π,α)

Figure 2.1: The Möbius strip over a circle is an example of a fibre bundle.

Suppose further that we are given a subset B ⊆ ⋃ {A→ F | A ⊆ E} satisfying:

1. {π[Dom(α)] | α ∈ B} is an open cover of M

2. ∀α ∈ B : Dom(α) = π−1[π[Dom(α)]]

3. ∀α ∈ B : (π, α) : Dom(α) → π[Dom(α)]× F is a bijection

4. ∀α, β ∈ B : (π, β) ◦ (π, α)−1 : π[Dom(α) ∩Dom(β)]× F → π[Dom(α) ∩Dom(β)]× F is a diffeomorphism

Then we can equip E with a unique topology OE and a unique smooth structure [AE ]∞ such that π : E →M is
a fibre bundle with bundle atlas B.
Proof 2.1. We first equip E with a topology OE that makes (E,OE) a topological manifold.

Subproof (Which topology OE to choose for E?). We might start with the initial topology τ(π) ={
π−1[W ] |W ∈ OM

}
on E with respect to the surjection π : E → M , thus making π : E → M a contin-

uous map. Note that for any α ∈ B, we have that Dom(α) ∈ τ(π). Since {π[Dom(α)] | α ∈ B} is an open
cover of M , we know that {Dom(α) | α ∈ B} is an open cover of E with respect to τ(π).

However, this topology is not fine enough for it fails to render the local trivialization (π, α) into a homeomor-
phism for each α ∈ B. We thus refine our topology OE on E starting from the topological basis

S =
{
(π, α)−1[V ] | α ∈ B ∧ V ∈ Oπ[Dom(α)]×F

}
⊆ P(E). (2.4)

By design, this topology renders (π, α) : Dom(α) → π[Dom(α)]× F into a homeomorphism for each α ∈ B.
In the following we will prove that (E,OE) is a topological manifold.

Subproof ((E,OE) is locally Euclidean). Let a ∈ E. Since {π [Dom(α)] | α ∈ B} is an open cover of M ,
there exists α ∈ B such that a ∈ Dom(α). Now choose a chart x ∈ AM at π(a) and a chart ξ ∈ AF at α(a).
Recall that their Cartesian product x× ξ : Dom(x)×Dom(ξ) → Rdim(M)+dim(F ) is a diffeomorphism onto
its image. Since π[Dom(α)] ∩Dom(x) ∈ OM and Dom(ξ) ∈ OF , the preimage

(π, α)−1 [(π[Dom(α)] ∩Dom(x))×Dom(ξ)] (2.5)
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is open in (E,OE). Furthermore, the map

(x× ξ) ◦ (π, α) : (π, α)−1 [(π[Dom(α)] ∩Dom(x))×Dom(ξ)]

→ x[π[Dom(α)] ∩Dom(x)]× ξ[Dom(ξ)]
(2.6)

is a homeomorphism onto its image as the composition of two homeomorphisms onto their images.

Subproof ((E,OE) is Hausdorff). Let a, b ∈ E such that a ̸= b. If a and b happen to lie in distinct fibres,
then π(a) ̸= π(b). Since M is Hausdorff, there exist open subsets Wa,Wb ∈ OM such that a ∈ Wa, b ∈ Wb

and Wa ∩Wb = ∅. Since π : (E,OE) → (M,OM ) is continuous, we have that π−1[Wa], π
−1[Wb] ∈ OE .

We found open subsets π−1[Wa] ∈ OE and π−1[Wb] ∈ OE that satisfy a ∈ π−1[Wa], b ∈ π−1[Wb] and
π−1[Wa] ∩ π−1[Wb] = ∅.
If a and b happen to lie in the same fibre, i.e. π(a) = π(b), there exists a bundle chart α that contains
both a and b in its domain. This is because {π[Dom(α)] | α ∈ B} is an open cover of M and Dom(α) =
π−1[π[Dom(α)]] for each α ∈ B. Since (π, α) : Dom(α) → π[Dom(α)] × F is a homeomorphism and since
π[Dom(α)] × F is Hausdorff, there exist Va, Vb ∈ Oπ[Dom(α)]×F such that (π(a), α(a)) ∈ Va, (π(b), α(b)) ∈
Vb and Va ∩ Vb = ∅. Finally, we have a ∈ (π, α)−1[Va] ∈ OE and b ∈ (π, α)−1[Vb] ∈ OE such that
(π, α)−1[Va] ∩ (π, α)−1[Vb] = ∅. We conclude that (E,OE) is Hausdorff.

Subproof ((E,OE) is second countable). Suppose that AF was chosen to be a countable smooth atlas,
which always exists since (F,OF ) is Lindelöf, cf. definition 1.1. Note that

U := {π[Dom(α)] ∩Dom(x) | (α, x) ∈ B ×AM} (2.7)

is an open cover of (M,OM ). Since (M,OM ) is Lindelöf, there exists a countable subcover U ′ ⊆ U . Due to
the axiom of choice, there exists a choice function c : U ′ → B×AM with the property that for every U ∈ U ′

the value (α, x) = c(U) at U satisfies U = π[Dom(α)] ∩ Dom(x). Note that the image c[U ′] ⊆ B × AM is
countable. We now claim that

AE =
{
(x× ξ) ◦ (π, α) : (π, α)−1 [(π[Dom(α)] ∩Dom(x))×Dom(ξ)]

→ RDim(M)+Dim(F ) | (α, x) ∈ c[U ′] ∧ ξ ∈ AF

} (2.8)

is a countable atlas of (E,OE). It is countable as the image of the Cartesian product of the countable sets
c[U ′] and AF , relying on the fact that the Cartesian product of countable sets is countable. It is left to
show that {

(π, α)−1 [(π[Dom(α)] ∩Dom(x))×Dom(ξ)] | (α, x) ∈ c[U ′] ∧ ξ ∈ AF

}
(2.9)

covers (E,OE). Let a ∈ E. Since {π[Dom(α)] ∩Dom(x) | (α, x) ∈ c[U ′]} covers (M,OM ) and
{Dom(ξ) | ξ ∈ AF } covers (F,OF ), there exist (α, x) ∈ c[U ′] and ξ ∈ AF such that π(a) ∈ π[Dom(α)] ∩
Dom(x) and α(a) ∈ Dom(ξ). Hence a ∈ (π, α)−1 [(π[Dom(α)] ∩Dom(x))×Dom(ξ)].

Subproof (Smooth structure). It remains to check that the provided atlas AE is a smooth atlas for (E,OE).
It suffices to show that the chart transition maps are diffeomorphisms in the Euclidean sense. To this end,
let (x× ξ) ◦ (π, α), (y × ζ) ◦ (π, β) ∈ AE be charts and consider the transition map:

(y × ζ) ◦ (π, β) ◦ ((x× ξ) ◦ (π, α))−1
: x[π[Dom(α) ∩Dom(β)] ∩Dom(x) ∩Dom(y)]× ξ[Dom(ξ) ∩Dom(ζ)]

→ y[π[Dom(α) ∩Dom(β)] ∩Dom(x) ∩Dom(y)]× ζ[Dom(ξ) ∩Dom(ζ)]

On the entire domain, we have that:

(y × ζ) ◦ (π, β) ◦ ((x× ξ) ◦ (π, α))−1
= (y × ζ) ◦

(
(π, β) ◦ (π, α)−1

)
◦ (x× ξ)−1 (2.10)

However, by requirement, (π, β)◦(π, α)−1 is an diffeomorphism and therefore, (x×ξ) and (y×ζ) being charts
of π[Dom(α) ∩Dom(β)]× F , the above map is a diffeomorphism in the Euclidean sense. Note that for every
α ∈ B, x ∈ AM and ξ ∈ AF , the map (x× ξ) ◦ (π, α) is a chart of E that is smoothly compatible with AE .
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Subproof (Fibre Bundle). We already know that π : E → M is a continuous surjection. First, observe that
π : E → M is smooth at every point a ∈ E. For, if (x × ξ) ◦ (π, α) ∈ AE is a chart of E at a, we have the
equality of maps on the domain in question

x ◦ π ◦ (π, α)−1 ◦ (x× ξ)−1 = pr1, (2.11)

which is smooth in the Euclidean sense. Likewise, any bundle chart α ∈ B is smooth at every point a ∈
Dom(α). For, if x ∈ AM and ξ ∈ AF are charts of M and F , respectively, then (x× ξ) ◦ (π, α) is a chart of
E as we had concluded in the preceding item. On the domain in question, we have the equality of maps

ξ ◦ α ◦ (π, α)−1 ◦ (x× ξ)−1 = pr2, (2.12)

which, once more, is smooth in the Euclidean sense. This also proves that (π, α) : Dom(α) → π[Dom(α)]×F
is smooth. Its inverse (π, α)−1 : π[Dom(α)]× F → Dom(α) is smooth due to the fact that

(x× ξ) ◦ (π, α) ◦ (π, α)−1 ◦ (x× ξ)−1 = id, (2.13)

is smooth in the Euclidean sense, too. This concludes the proof.

Example 2.1 (The tangent bundle of a smooth manifold). The above theorem can be used to prove that for
every smooth manifold M we can canonically construct a fibre bundle

π : TM →M,v 7→ p such that v ∈ TpM (2.14)

whose total space TM := {TpM | p ∈M} is the (disjoint) union of the tangent spaces TpM at all points p ∈M .
Suppose we are given a smooth atlas AM for M . It is straightforward to prove that the collection

B :=
{
x∗ : π

−1[Dom(x)] → RDim(M) | x ∈ AM

}
(2.15)

satisfies the hypothesis of theorem 2.1. We call π : TM →M the tangent bundle of M .

Example 2.2 (The differential bundle of a fibre bundle). Suppose π : E → M is a fibre bundle with typical
fibre F and bundle atlas B. The differential π∗ : TE → TM of π is a fibre bundle with typical fibre TF and
bundle atlas

Bπ∗ := {α∗ : T Dom(α) → TF | α ∈ B} , (2.16)

by theorem 2.1.

Example 2.3 (The pullback of a fibre bundle along a smooth map). Let π : E → M be a fibre bundle with
typical fibre F and bundle atlas B. Let f : N →M be a smooth map. Define the set

f∗E := {(p, a) ∈ N × E | f(p) = π(a)} . (2.17)

The map Π: f∗E → N, (p, a) 7→ p is a fibre bundle with bundle atlas

f∗B :=
{
α ◦ pr2 : Π−1

[
f−1[π[Dom(α)]]

]
→ F | α ∈ B

}
. (2.18)

Definition 2.4 (Section of a fibre bundle). Let π : E → M be a fibre bundle over M with typical fibre F . A
section is a smooth map s : M → E such that π ◦ s : M → M coincides with the identity map idM : M → M ,
i.e., such that the following diagram commutes:

E

M M

πs

idM

6



pr1

pr2

π

f

(p, a)

p

a

π(a)

(p, π(a))

(q, b)

q

b

π(b)

(q, π(b))

f ∗E

N × E E

MN

N ×M

(f, idN)[N ]

Figure 2.2: An exemplary construction of a pullback bundle along a map f : S1 →M .

We denote the set of sections of π : E →M by Γ(π), or - if no confusion is possible - by Γ(E).

Remark 2.3. We will also refer to a section s : M → E of a fibre bundle as global section. The motivation
behind this terminology relies on the following context. Let U ⊆M be an open subset of M . Since π : E →M
is continuous, the set E|U := π−1[U ] is an open set of E. Then π|E|U : E|U → U is a fibre bundle as well. A
section of π|E|U : E|U → U is called a local section of the fibre bundle π : E →M . Note that the restriction of
a global section to any open set of M is a local section. As we will see, a fibre bundle might not admit a global
section. The existence of local sections, on the contrary, is guaranteed by the existence of a bundle atlas.

Definition 2.5. Let π : E → M be a fibre bundle and f : M → N a smooth map. A smooth map s : N → E
that satisfies π ◦ s = f is said to be a section along f , denoted by s ∈ Γγ(E).

Remark 2.4. Let π : E → M be a fibre bundle and f : M → N a smooth map. There is a one-to-one corre-
spondence between sections along f and sections of the pullback bundle f∗E.

Example 2.4. Given a curve γ : R →M on a smooth manifold, the map

R → TM, t 7→ γ̇(t) (2.19)

that attributes to every t ∈ R the tangent vector γ̇(t) of the curve γ at t can be understood as a section of TM
along γ or as a section of the pullback bundle γ∗(TM).
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π

p
U

π−1[{p}]

π−1 [U ]

Figure 2.3: A global and a local section of a fibre bundle.

Definition 2.6 (Bundle morphism). Let π : E → M and π′ : E′ → M ′ be two fibre bundles. Suppose we are
given two smooth maps Φ: E → E′ and φ : M →M ′.

We say that Φ is a bundle morphism along φ, or simply that (Φ, φ) is a bundle morphism from π : E →M
to π′ : E′ →M ′, if the following diagram commutes:

E E′

M M ′

π

Φ

π′

φ

Put differently, a bundle morphism Φ: E → E′ along φ : M →M ′ maps each fibre Ep = π−1[{p}] onto the
fibre E′

φ(p) = π′−1[{φ(p)}] in a smooth fashion.

Definition 2.7 (Bundle isomorphism). A bundle morphism (Φ, φ) from π : E →M to π′ : E′ →M ′ is said to
be a bundle isomorphism if Φ: E → E′ and φ : M → M ′ are diffeomorphisms, i.e., if (Φ−1, φ−1) is defined
and a bundle morphism from π′ : E′ →M ′ to π : E →M .

Definition 2.8 (Trivial fibre bundle). We say that a fibre bundle π : E →M with typical fibre F is trivial if
it admits a global bundle chart, or equivalently, if there exists a bundle isomorphism (Φ, φ) from π : E →M to
pr1 : M × F → F, (p, f) 7→ p.
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π

p
U

π−1[{p}]

π−1 [U ]

Figure 2.4: The Möbius strip is an example of a
non-trivial fibre bundle. It cannot be expressed as
a Cartesian product of two smooth manifolds.

π

p
U

π−1[{p}]

π−1 [U ]

Figure 2.5: The cylinder is an example of a trivial
fibre bundle. It can be expressed as the Cartesian
product S1 × R.
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3 Fibre bundles with effective structure group action

Fibre bundles for themselves are rather simple structures. They become more interesting for applications in
physics once we equip them with more additional structure. In this chapter we set the starting point of this
journey and get in contact with some more specific and more useful examples of fibre bundles.

Throughout most of the first part of this chapter denote by (G,OG,AG, •) be a Lie group and by (M,OM ,AM )
a smooth manifold. Before continuing make sure that you are familiar with concepts of appendix C.

Definition 3.1 (Lie group left action (on a smooth manifold)). A smooth left action ▷ : G×M →M is called
a left G-action on M .

Definition 3.2 (Lie group right action (on a smooth manifold)). A smooth right action ◁ : M × G → M is
called a right G-action on M .

Definition 3.3 (Lie group action compatible bundle atlas). Let ▷ : G × F → F be an effective Lie group left
action. A bundle atlas B of a fibre bundle π : E → M over M with typical fibre F is said to be (G, ▷)-
compatible if for any two bundle charts α, β ∈ B with non-empty overlap Dom(α) ∩Dom(β) ̸= ∅ there exists
a smooth map ρβα : π [Dom(α) ∩Dom(β)] → G such that for any p ∈ π [Dom(α) ∩Dom(β)] and ξ ∈ F it holds
that (

β|Ep
◦ α|Ep

−1
)
(ξ) = β ◦ (π, α)−1

(p, ξ) = ρβα(p) ▷ ξ. (3.1)

In terms of the transition function ρ̃βα : π [Dom(α) ∩Dom(β)] → Diff(F ) the above conditions says that for any
p ∈ π [Dom(α) ∩Dom(β)] it holds that ρ̃βα(p) = ρβα(p)▷. In this light, it is natural to call ρβα a (G-valued)
transition function of B.
We say that two (G, ▷)-compatible bundle atlases B and B′ are (G, ▷)-equivalent if their union B ∪ B′ is also
a (G, ▷)-compatible bundle atlas. An equivalence class of (G, ▷)-equivalent (G, ▷)-compatible bundle atlases
[B](G,▷) is said to be a (G, ▷)-bundle structure for the fibre bundle π : E →M .

Proposition 3.1 (G-valued transition functions satisfy cocycle conditions). The G-valued transition functions
{ρβα | β, α ∈ B} of a (G, ▷)-compatible bundle atlas satisfy the following cocycle conditions:

∀α ∈ B : ∀p ∈ π[Dom(α)] : ραα(p) = eG, (3.2)

∀α, β, γ ∈ B : ∀p ∈ π[Dom(α)] ∩ π[Dom(β)] ∩ π[Dom(γ)] : ργα(p) = ργβ(p) • ρβα(p). (3.3)

Proof 3.1. Recall Remark 2.2 (Transition functions of a bundle atlas satisfy cocycle conditions). The second
part (equation (3.3)) is readily verified given that ▷ : G×F → F is a left action. The first part (equation (3.2)),
on the contrary, does not follow from this fact. It instead relies on the action ▷ : G× F → F being effective.

Remark 3.1 (Lie group action bundle structure). The last part of Definition 3.3 (Lie group action compatible
bundle atlas) indeed establishes an equivalence relation on the set of (G, ▷)-compatible bundle atlases of a fibre
bundle π : E → M with given effective Lie group left action ▷ : G× F → F , thus justifying well-definedness of
(G, ▷)-bundle structures.
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Remark 3.2 (Not every bundle atlas is Lie group action compatible). In the context of finite-dimensional mani-
folds, the diffeomorphism group Diff(F ) of an at least 1-dimensional non-empty smooth manifold F does not
qualify as a Lie group, for it fails to be finite-dimensional.2 It is thus true that every fibre bundle π : E → M
over a non-empty manifold M and with typical fibre F admits a bundle atlas that fails to be (G, ▷)-compatible
for any Lie group G and effective Lie group left action ▷ : G×F → F . Take as an example the maximal bundle
atlas.

Remark 3.3 (Analogy between smooth structures and bundle structures). Recall that one of the conditions of
Definition 2.1 (Fibre bundle (over a smooth manifold M with typical fibre F )) was precisely the existence of a
bundle atlas. However, we do not need to provide a distinguished bundle atlas in order to define a fibre bundle.
The existence of some bundle atlas ensures the existence of a unique maximal bundle atlas that contains every
possible bundle atlas as a subset. This is due to the fact that the union of any two bundle atlases is also a bundle
atlas. Observe that the same rationale applies to atlases of topological manifolds. Whenever a topological space
qualifies as a topological manifold, there exist atlases for it. Moreover, all of them are subsets of a unique
maximal atlas.

The situation changes fundamentally as soon as we look at smooth manifolds. In order to make a topological
manifold into a smooth manifold we have to provide additional structure, we do this by restricting ourselves to
some maximal smooth atlas. In full analogy we can make a fibre bundle into a fibre bundle with effective
structure group by restricting ourselves to some maximal (G, ▷)-compatible bundle atlas, thus providing an
additional (G, ▷)-bundle structure.

Definition 3.4 (Fibre bundle with effective structure group action). Let π : E → M be a fibre bundle over
M with typical fibre F and let ▷ : G× F → F be an effective Lie group left action.

The fibre bundle π : E →M together with a (G, ▷)-bundle structure [B](G,▷) is said to be a fibre bundle with
effective structure group action ▷. The group G is then said to be the structure group of π : E → M
with its bundle atlas B.
Whenever we talk about a fibre bundle π : E →M with effective structure group action ▷ it often comes
unsaid that we provide a (G, ▷)-compatible bundle atlas B that fixes the (G, ▷)-bundle structure.

Definition 3.5 (Structure group reduction of bundle atlas). Let π : E → M be a fibre bundle with effective
effective structure group action ▷ : G×F → F over M with typical fibre F and with maximal (G, ▷)-compatible
bundle atlas B. Let H ⊆ G be a Lie subgroup of G.

A subset B′ ⊆ B that qualifies as a (H, ▷|H)-compatible bundle atlas for π : E → M , where ▷|H : H × F →
F, (h, ξ) 7→ h ▷ ξ is the restriction of ▷ to H, is said to be a structure group reduction from G to H of the
(G, ▷)-compatible bundle atlas B.

We will shortly encounter three special cases. While in general there does not exist a specialisation of bundle
morphisms to fibre bundles with effective structure group action, there does for bundle isomorphisms.

Definition 3.6 (Isomorphism of fibre bundles with effective structure group action). Let π : E →M and π′ : E′ →
M be two fibre bundles with effective structure group action ▷ : G × F → F over M with typical fibre F and
with (G, ▷)-compatible bundle atlases B and B′, respectively.

Suppose we are given a bundle isomorphism Φ : E → E′ along idM : M → M . We say that Φ is a bundle
isomorphism of fibre bundles over M with effective structure group action ▷ : G× F → F if for any
two bundle charts α ∈ B and α′ ∈ B′ there exists a smooth map τα′α : π [Dom(α)]∩π′ [Dom(α′)] → G such that

∀p ∈ π [Dom(α) ∩Dom(α′)] : ∀ξ ∈ F : α′ ◦ Φ ◦ (π, α)−1(p, ξ) = τα′α(p) ▷ ξ. (3.4)

2 Note the correspondence between the diffeomorphism group Diff(F ) and the (infinite-dimensional) Lie algebra of vector fields
Γ(TF ) over R.
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π

Uα × F

Uβ × F

ab

ρβα(π(a))▷
ρβα(π(b))▷

∃ρβα : Uα ∩ Uβ → G smooth

β(a) = ρβα (π(a)) ▷ α(a)

β(b) = ρβα (π(b)) ▷ α(b)Uα

Uβ

(π,α)

(π,β)

Figure 3.1: The Möbius strip may be understood as a fibre bundle with effective structure
group action. As we will see, there exist bundle atlases which are compatible with respect
to distinct Lie group left actions.

Proposition 3.2. Let π1 : E1 → M and π2 : E2 → M be two fibre bundles over M with typical fibre F and
effective Lie group left action ▷ : G× F → F .

Let I be such that {Ui | i ∈ I} is an open cover of M with the property that there exist a (G, ▷)-compatible
bundle atlas B1 =

{
α1
i : π1

−1 [Ui] → Ui × F | i ∈ I
}

for π1 : E1 → M and a (G, ▷)-compatible bundle atlas

B2 =
{
α2
i : π2

−1 [Ui] → Ui × F | i ∈ I
}
for π2 : E2 →M .

Then π1 : E1 → M and π2 : E2 → M are bundle isomorphic as fibre bundles over M with effective struc-
ture group action ▷ : G × F → F if and only if there exists a family of smooth maps {νi : Ui → G | i ∈ I}
that relates the transition functions

{
ρ1ij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅

}
of B1 to the transition functions{

ρ2ij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅
}
of B2 through:

∀i, j ∈ I : ∀p ∈ Ui ∩ Uj : νi(p) • ρ1ij(p) = ρ2ij(p) • νj(p) (3.5)

Proof 3.2. We start off by proving the existence of an isomorphism of fibre bundles over M with effective
structure group action ▷ : G × F → F between π : E1 → M and π : E2 → M , provided the existence of the
family of smooth maps {νi : Ui → G | i ∈ I}.

Subproof (Constructing an isomorphism of fibre bundles with effective structure group action). For each i ∈ I,
we define a smooth map given by

Φi : π1
−1[Ui] → π2

−1[Ui], a 7→ (π2, α
2
i )

−1
(
π1(a), νi (π1(a)) ▷ α

1
i (a)

)
. (3.6)

This map takes a point a in the fibre π1
−1[{p}] of E1 over a point p ∈ Ui and assigns to it a value in the

typical fibre F by means of the bundle chart α1
i ∈ B1. We then act on that value by the group element
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νi(π1(p)) before using the bundle chart α2
i ∈ B2 in order to obtain a point Φi(a) in the fibre π2

−1[{p}] of
E2. We claim that this property ensures that Φi and Φj agree on their domain intersection π1

−1[Ui ∩ Uj ]
for all i, j ∈ I. In order to see this, suppose αi and αj are two bundle charts of B1 with non-empty domain
intersection π−1

1 [Ui ∩ Uj ]. The claim is proven if we can show that for any point a ∈ π1
−1[Ui ∩ Uj ] it holds

that (
α2
j ◦ Φi

)
(a) = νj(π1(a)) ▷ α

1
j (a). (3.7)

Using the definition of Φi, the left hand side becomes

(
α2
j ◦ Φi

)
(a) =

(
α2
j ◦ (π2, α2

i )
−1
) (
π1(a), νi (π1(a)) ▷ α

1
i (a)

)
,

which by means of the transition function ρ2ji : Ui ∩ Uj → G is readily expressed as

= ρ2ji(π1(a)) ▷
(
νi (π1(a)) ▷ α

1
i (a)

)

and equal to

=
(
ρ2ji(π1(a)) • νi (π1(a))

)
▷ α1

i (a)

since ▷ : G× F is a left action. The hypothesis of the proposition, eq. (3.5), allows us to write

=
(
νj (π1(a)) • ρ1ji(π1(a))

)
▷ α1

i (a),

which is equal to

= νj (π1(a)) ▷
(
ρ1ji (π1(a)) ▷ α

1
i (a)

)
,

▷ : G × F → F being a left action. Letting the transition function ρ1ji : Ui ∩ Uj → G act on α1
i (a) yields

precisely the right hand side of eq. (3.7):

= νj(π1(a)) ▷ α
1
j (a).

This proves that the map

Φ: E1 → E2, a 7→
(
π2, α

2
i

)−1 (
π1(a), νi (π1(a)) ▷ α

1
i (a)

)
for i ∈ I : π1(a) ∈ Ui (3.8)

is a well-defined smooth map. Under exchange of νi : Ui → G with ν̃i : Ui → G, p 7→ νi(p)
−1, the above

reasoning proves that the map

Ψ: E2 → E1, b 7→
(
π1, α

1
i

)−1
(
π2(b), νi (π2(b))

−1
▷ α2

i (b)
)

for i ∈ I : π2(b) ∈ Ui (3.9)

is well-defined and smooth as well. From eqs. (3.8) and (3.9) we read off that π2 ◦Φ = π1 and π1 ◦Ψ = π2, i.e.,
both Φ: E1 → E2 and Ψ: E2 → E2 preserve fibres. In order to show that Φ: E1 → E2 is a bundle isomorphism
along the identity morphism idM , it is left to show that Ψ: E2 → E1 is the inverse of Φ: E1 → E2. To this
end, pick an arbitrary point a ∈ E1 and fix i ∈ I such that π1(a) ∈ Ui. Using the definitions of both Φ and
Ψ we discover that

(Ψ ◦ Φ) (a) =
(
π1, α

1
i

)−1
(
π1(a), νi (π2(Φ(a)))

−1
▷ α2

i (Φ(a))
)

=
(
π1, α

1
i

)−1
(
π1(a), νi (π1(a))

−1
▷
(
νi(π1(a)) ▷ α

1
i (a)

))
.

It is straightforward to show that the left action ▷ : G × F → F satisfies g−1 ▷ (g ▷ ξ) = ξ for all g ∈ G and
ξ ∈ F . Consequently,

=
(
π1, α

1
i

)−1 (
π1(a), α

1
i (a)

)
,

= a.

13



Again, by symmetry, it also follows that Φ◦Ψ = idE2
. It remains to check that Φ: E1 → E2 is an isomorphism

of fibre bundles over M with effective structure group action ▷ : G × F → F . In fact, eq. (3.7) of this proof
already verified that eq. (3.4) holds for the smooth map νi : Ui → G when α1

i ∈ B2 and α2
i ∈ B2 are chosen.

Let us verify this result for arbitrary bundle charts α1
i ∈ B1 and α2

j ∈ B2 with non-empty domain intersection
Ui ∩ Uj ̸= ∅. Let p ∈ Ui ∩ Uj and ξ ∈ F , then

(
α2
j ◦ Φ ◦

(
π1, α

1
i

)−1
)
(p, ξ) =

(
α2
j ◦
(
π2, α

2
i

)−1
)
(p, νi(p) ▷ ξ)

using the definition of Φ: E1 → E2, and

= ρ2ji(p) ▷ (νi(p) ▷ ξ)

using the transition function ρ2ji : Ui ∩ Uj → G. Finally, since ▷ : G× F → F is a left action, we obtain

=
(
ρ2ji(p) • νi(p)

)
▷ ξ.

With that we found a smooth map τji : Ui∩Uj → G, p 7→ ρ2ji(p)•νi(p) satisfying eq. (3.4) for arbitrary bundle

charts α1
i ∈ B1 and α2

j ∈ B2. This concludes the first part of the proof.

Let us now prove the second part of the proposition. Suppose we are given an isomorphism Φ: E1 → E2 of fibre
bundles over M with effective structure group action ▷ : G × F → F between π1 : E1 → M and π2 : E2 → M
with respect to their respective (G, ▷)-bundle structures [B1](G,▷) and [B2](G,▷).

Subproof (Retrieving the family of smooth maps {νi : Ui → G | i ∈ I}). It is fairly straightforward to recover
the family of smooth maps {νi : Ui → G | i ∈ I}; they are precisely a subset of the maps appearing in the
definition of what it means for Φ: E1 → E2 to be an isomorphism of fibre bundles over M with effective
structure group action ▷ : G×F → F . Let i ∈ I, then α1

i ∈ B1 and α2
i ∈ B2. Consequently, by definition 3.6,

there exists a smooth map νi : Ui → G such that

∀p ∈ Ui : ∀ξ ∈ F : α2
i ◦ Φ ◦

(
π1, α

1
i

)−1
(p, ξ) = νi(p) ▷ ξ. (3.10)

It remains to check that the family of smooth maps {νi : Ui → G | i ∈ I} correctly relates the transition
functions

{
ρ1ji : Ui ∩ Uj → G | i, j ∈ I

}
of B1 to the transition functions

{
ρ2ji : Ui ∩ Uj → G | i, j ∈ I

}
of B2.

Let i, j ∈ I such that Ui ∩ Uj ̸= ∅ and consider the expression
(
α2
j ◦ Φ ◦

(
π1, α

1
i

)−1
)
(p, ξ), (3.11)

where p ∈ Ui ∩ Uj and ξ ∈ F . On the one hand, we can insert the identity
(
π2, α

2
i

)−1 ◦
(
π2, α

2
i

)
in between

α2
j and Φ in order to obtain

(
α2
j ◦ Φ ◦

(
π1, α

1
i

)−1
)
(p, ξ) =

(
α2
j ◦
(
π2, α

2
i

)−1 ◦
(
π2, α

2
i

)
◦ Φ ◦

(
π1, α

1
i

)−1
)
(p, ξ)

=
(
α2
j ◦
(
π2, α

2
i

)−1
)
(p, νi(p) ▷ ξ)

= ρ2ji(p) ▷ (νi(p) ▷ ξ) .

On the other hand, we can insert the identity
(
π1, α

1
j

)−1 ◦
(
π1, α

1
j

)
in between Φ and

(
π1, α

1
i

)−1
. Then:

(
α2
j ◦ Φ ◦

(
π1, α

1
i

)−1
)
(p, ξ) =

(
α2
j ◦ Φ ◦

(
π1, α

1
j

)−1 ◦
(
π1, α

1
j

)
◦
(
π1, α

1
i

)−1
)
(p, ξ)

=
(
α2
j ◦ Φ ◦

(
π1, α

1
j

)−1
) (
p, ρ1ji(p) ▷ ξ

)

= νj(p) ▷
(
ρ1ji(p) ▷ ξ

)
.

Since ▷ : G→ F is a left action and ξ ∈ F arbitrary, it follows by comparison that ρ2ji(p)•νi(p) = νj(p)•ρ1ji(p)
holds for all p ∈ Ui ∩ Uj . This concludes the proof.
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Remark 3.4. Note that by an appropriate choice of either B1 or B2 from the respective (G, ▷)-bundle structures
of isomorphic fibre bundles π1 : E1 →M and π2 : E2 →M with effective structure group action ▷ : G×F → F ,
we can always make their G-valued transition functions coincide, such that νi : Ui → G, p 7→ eG for all i ∈ I.

Theorem 3.3 (Fibre bundle construction theorem). Let (M,OM ,AM ) and (F,OF ,AF ) be non-empty smooth
manifolds, (G,OG,AG, •) a Lie group and ▷ : G× F → F an effective Lie group left action.

Suppose we are given I such that {Ui | i ∈ I} is an open cover ofM and {ρij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅}
is a collection of smooth maps satisfying the following cocycle conditions:

∀i ∈ I : ∀p ∈ Ui : ρii(p) = eG, (3.12)

∀i, j, k ∈ I : [Ui ∩ Uj ∩ Uk ̸= ∅ =⇒ ∀p ∈ Ui ∩ Uj ∩ Uk : ρik(p) = ρij(p) • ρjk(p)] . (3.13)

Then there exists a fibre bundle π : E → M over M with typical fibre F and a (G, ▷)-compatible bundle atlas
B =

{
αi : π

−1[Ui] → F | i ∈ I
}
whose transition functions agree with the set

{ρij▷ : Ui ∩ Uj → Diff(F ), p 7→ ρij(p)▷ | i, j ∈ I : Ui ∩ Uj ̸= ∅} . (3.14)

In particular, π : E → M together with the (G, ▷)-bundle structure [B](G,▷) qualifies as a fibre bundle with
effective structure group action.

Moreover, by proposition 3.2, π : E → M is unique up to isomorphism of fibre bundles with effective structure
group action ▷ : G× F → F .

Proof 3.3. The conceptual idea is to consider for any i ∈ I the product manifold Ui × F as a patch of the fibre
bundle to be constructed over which the fibre bundle is trivial. Given two such patches Ui×F and Uj ×F with
overlap in the sense of Ui ∩ Uj ̸= ∅, we regard them as disjoint sets which we glue together by means of the
transition function ρij▷.

We formalize this idea in the following way:

We start off with the disjoint union of the patches Ui × F

E :=
⋃

{Ui × F × {i} | i ∈ I} ⊆M × F × I (3.15)

as underlying set on which we establish an equivalence relation ∼ according to

∀(p, ϕ, i), (q, ψ, j) ∈ E : [(p, ϕ, i) ∼ (q, ψ, j) : ⇐⇒ p = q ∧ ϕ = ρij(p) ▷ ψ] . (3.16)

It is an equivalence relation due to the cocycle conditions that the collection of smooth maps

{ρij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅} (3.17)

satisfies. As we see below, this correctly glues the different patches together.

The set that we equip with the structure of a fibre bundle with the given effective structure group action
▷ : G× F → F is the set of equivalence classes E := E/∼.
Note that the projection onto the first argument pr1 : E → M is constant on the equivalence classes. It thus
induces a map π : E →M , the projection of the fibre bundle to be constructed.

Subproof (π : E → M is a surjection). The projection π : E → M is a surjection since {Ui | i ∈ I} is an
open cover of M . For, if p is a point in M , then there exists i ∈ I such that p ∈ Ui. By hypothesis F is
non-empty. Hence there exists ξ ∈ F , and consequently, we have an element [(p, ξ, i)]∼ ∈ E that satisfies
π([(p, ξ, i)]∼) = pr1((p, ξ, i)) = p.
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Subproof (Providing a proto bundle atlas for π : E → M). We suggest the following collection of maps as a
prototype of the bundle atlas to be constructed:

B :=
{
αi : π

−1[Ui] → F, [(p, ϕ, i)]∼ 7→ ϕ | i ∈ I
}
. (3.18)

Note that for each i ∈ I, the map αi : π
−1[Ui] → F is indeed well-defined. Firstly, every point a ∈ π−1[Ui]

can be represented by (p, ϕ, i) for some p ∈ Ui and ϕ ∈ F . Secondly, the element ϕ ∈ F with this property
is unique. For, if there exists another ϕ′ ∈ F such that a = [(p, ϕ′, i)]∼ then (p, ϕ′, i) ∼ (p, ϕ, i), which
by definition means that ϕ′ = ρii(p) ▷ ϕ. However, since ρii(p) = e by hypothesis and due to the fact that
▷ : G×F → F is a left action, it follows that ϕ′ = e▷ϕ = ϕ. We conclude that αi : π

−1[Ui] → F is well-defined.

We will now show that B satisfies the hypotheses (1)-(4) from Theorem 2.1 (Equipping a set with the structure
of a fibre bundle using a bundle atlas).

Let i ∈ I. By definition, we have that Dom(αi) = π−1[Ui]. Since π : E → M is a surjection, it holds
that Ui = π[Dom(αi)]. This proves hypothesis (2), i.e., Dom(αi) = π−1 [π[Dom(αi)]]. It also proves that
{π[Dom(αi)] | i ∈ I} is an open cover of M , being that {Ui | i ∈ I} is an open cover of M by assumption.
This proves hypothesis (1). Now consider the map

(π, αi) : π
−1[Ui] → Ui × F, [(p, ϕ, i)]∼ 7→ (p, ϕ). (3.19)

It is well-defined as both π : E → M and αi : π
−1[Ui] → F are well-defined. It is readily verified that it is

bijective with inverse
(π, αi)

−1 : Ui × F → π−1[Ui], (p, ϕ) 7→ [(p, ϕ, i)]∼. (3.20)

This proves hypothesis (3). It remains to check hypothesis (4). To this end let i, j ∈ I such that Ui ∩Uj ̸= ∅
and let a ∈ π−1[Ui ∩ Uj ]. We have seen earlier that there exist p ∈ Ui ∩ Uj and ϕ, ψ ∈ F such that
a = [(p, ϕ, i)]∼ = [(p, ψ, j)]∼. By definition of ∼, the relationship ψ = ρji(p) ▷ ϕ holds. This relationship
determines the map

(π, αj) ◦ (π, αi)
−1 : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F, (p, ϕ) 7→ (p, ρji(p) ▷ ϕ) . (3.21)

Written in this way, it is evidently identified as a smooth map, being a tuple of smooth maps.

Subproof (B is (G, ▷)-compatible). It remains to check that B is a (G, ▷)-compatible bundle atlas with tran-
sition functions provided by the set {ρij▷ : Ui ∩ Uj → Diff(F ), p 7→ ρij(p)▷ | i, j ∈ I : Ui ∩ Uj ̸= ∅}. This is
readily verified by inspection of equation (3.21).

3.1 Vector bundles

From the point of view of a physicist, we desire to make contact with the actual structure that we want to
model. That is why we pursue a rather verbose definition of what a vector bundle encompasses.

Definition 3.7 (Vector bundle (of rank k)). Let π : E → M be a fibre bundle over M with typical fibre V .
π : E →M is said to be a vector bundle of rank k over M with typical fibre V if:

1. V is equipped with a k-dimensional real vector space structure compatible with its smooth structure (in
the sense that any linear isomorphism φ : V → Rk is a diffeomorphism),

2. for any point p ∈M , the fibre Ep = π−1[{p}] is equipped with the structure of a k-dimensional real vector
space,

3. there exists a bundle atlas B consisting of (fibre-wisely) linear bundle charts (also referred to as vector
bundle charts), i.e.,

∀α ∈ : ∀p ∈ π[Dom(α)] :
(
α|Ep : Ep → V is a linear isomorphism

)
. (3.22)
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Example 3.1. The tangent bundle π : TM →M of a smooth manifold M is a vector bundle.

Proposition 3.4 (Vector bundle is fibre bundle with general linear structure group action). A vector bundle
π : E → M with typical fibre V and vector bundle atlas B can be canonically regarded as a fibre bundle with
effective structure group action with respect to the defining representation of GL(k,R), and vice-versa.

Proof 3.4. We first pick a linear diffeomorphism φ : V → Rk. Its existence is guaranteed by item 1 from
definition 3.7. We then can define B̃ := {φ ◦ α | α ∈ B}. It holds that π : E →M is a vector bundle with typical
fibre Rk and vector bundle atlas B̃. Let us take a look at the transition functions of B̃. For any two vector
bundle charts α̃, β̃ ∈ B̃, we have

ρβ̃α̃ : π[Dom(α)] ∩ π[Dom(β)] → Diff(Rk), p 7→ φ ◦ β|Ep ◦ α|−1
Ep

◦ φ−1. (3.23)

In fact, ρβ̃α̃ maps into GL(k,R), being that its value at p is the composition of linear isomorphisms. Moreover,
it smoothly depends on p as it is the composition of smooth maps. This becomes apparent when we express
ρβ̃α̃(p) explicitly and in components

(
ρβ̃α̃(p)

)n
m

= φn ◦ β ◦ (π, α)−1
(
p, φ−1(em)

)
for 1 ≤ m,n ≤ k, (3.24)

where em is the m-th element of the standard basis of Rk. This proves the first part of the claim.

The converse direction is verified in straightforward fashion. Given a fibre bundle π : E →M with typical fibre
Rk and (GL(k,R), )-compatible bundle atlas B, all we have to do is equip Rk with its canonical k-dimensional
real vector space structure and subsequently transfer it onto each fibre Ep by means of the bundle charts of B.
This is done consistently due to the fact that B is (GL(k,R), )-compatible.

Definition 3.8 (Vector bundle morphism). Let π : E → M and π′ : E′ → M ′ be vector bundles. A bundle
morphism (Φ, φ) from π : E →M to π′ : E′ →M ′ is said to be a vector bundle morphism if for every p ∈M
the restriction Φ|Ep : Ep → E′

φ(p) is a linear map.

Definition 3.9 (Vector bundle isomorphism). A vector bundle morphism (Φ, φ) that is also a bundle isomor-
phism is said to be a vector bundle isomorphism. This is precisely the case if (Φ−1, φ−1) is defined and a
vector bundle morphism as well.

Remark 3.5 (Every vector bundle admits global section). Note that a vector bundle π : E → M over M of
rank k admits a global section. One such section is the null section 0Γ(π) : M → E, p 7→ 0Ep .

Definition 3.10. The pointwise addition of sections of a vector bundle is the operation

⊕
Γ(E)

: Γ(E)× Γ(E) → Γ(E), (Y,Z) 7→ Y ⊕
Γ(E)

Z, (3.25)

where
Y ⊕

Γ(E)
Z : M → E, p 7→ Y (p) ⊕

Ep

Z(p). (3.26)

Definition 3.11. The C∞(M)-scalar multiplication, or pointwise scalar multiplication, on the set of
sections of a vector bundle is the operation

⊡
Γ(E)

: C∞(M)× Γ(E) → Γ(E), (φ, Y ) 7→ φ ⊡
Γ(E)

Y, (3.27)

where
φ ⊡

Γ(E)
Y : M → E, p 7→ φ(p) ⊡

Ep

Y (p). (3.28)

Exercise 3.1. Verify that the set of sections Γ(E) of a vector bundle, together with pointwise addition ⊕Γ(E)

and pointwise scalar multiplication ⊡Γ(E) forms a unital module (Γ(E),⊕Γ(E),⊡Γ(E)) over the unital commu-
tative ring (C∞(M),+C∞(M), ·C∞(M)) of the smooth functions on M .
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3.2 Affine Bundles

There exists a noteworthy generalization of vector bundles with relevance for teleparallel gravity, the class of
affine bundles. Refer to appendix D for a short review of affine spaces.

Definition 3.12 (Affine bundle (of rank k)). Let π : E → M be a fibre bundle over M with typical fibre A.
π : E →M is said to be an affine bundle of rank k over M with typical fibre A if:

1. A is equipped with a k-dimensional real affine space structure (A, V,⊞) compatible with its smooth struc-
ture (in the sense that any affine isomorphism ϕ : A→ Rk is a diffeomorphism)

2. for any point p ∈ M , the fibre Ep is equipped with the structure of a k-dimensional real affine space
(Ep, Ēp,⊞p)

3. there exists a bundle atlas B of π : E →M consisting of fibre-wisely affine bundle charts, i.e.,

∀α ∈ B : ∀p ∈ π [Dom(α)] :
(
α|Ep

: Ep → A is an affine isomorphism
)
. (3.29)

Example 3.2. Every vector bundle can be canonically understood as an affine bundle due to the fact that a
vector space can be understood as an affine space over itself in a canonical way.

Proposition 3.5 (Affine bundle is fibre bundle with general affine structure group action). An affine bundle
π : E → M with typical fibre A and affine bundle atlas B can be canonically regarded as a fibre bundle with
effective structure group action with respect to the defining representation of GA(k,R), and vice-versa.

Proof 3.5. We first pick an affine diffeomorphism ϕ : A → Rk. Its existence is guaranteed by item 1 from
definition 3.12. We then can define B̃ := {ϕ ◦ α | α ∈ B}. It holds that π : E → M is an affine bundle with
typical fibre Rk and affine bundle atlas B̃. Let us take a look at the transition functions of B̃. For any two affine
bundle charts α̃, β̃ ∈ B̃, we have

ρβ̃α̃ : π[Dom(α)] ∩ π[Dom(β)] → Diff(Rk), p 7→ ϕ ◦ β|Ep
◦ α|−1

Ep
◦ ϕ−1. (3.30)

In fact, ρβ̃α̃ maps into GA(k,R), being that its value at p is the composition of affine isomorphisms. Moreover,
it smoothly depends on p as it is the composition of smooth maps. This becomes apparent when we express
ρβ̃α̃(p) explicitly and in components

(
ρβ̃α̃(p)(0)

)n
= ϕn ◦ β ◦ (π, α)−1

(
p, ϕ−1(0)

)
for 1 ≤ n ≤ k, (3.31)

(−−−−→
ρβ̃α̃(p)

)n
m

= ϕn ◦ β ◦ (π, α)−1
(
p, ϕ−1(em)

)
−
(
ρβ̃α̃(p)(0)

)n
for 1 ≤ m,n ≤ k, (3.32)

where em is the m-th element of the standard basis of Rk. This proves the first part of the claim.

The converse direction is verified in straightforward fashion. Given a fibre bundle π : E →M with typical fibre
Rk and (GA(k,R), )-compatible bundle atlas B, all we have to do is equip Rk with its canonical k-dimensional
real affine structure and subsequently transfer it onto each fibre Ep by means of the bundle charts of B. This
is done consistently due to the fact that B is (GA(k,R), )-compatible.

Definition 3.13 (Affine bundle morphism). Let π : E → M and π′ : E′ → M ′ be affine bundles. A bundle
morphism (Φ, φ) from π : E →M to π′ : E′ →M ′ is said to be an affine bundle morphism if for every p ∈M
the restriction Φ|Ep

: Ep → E′
φ(p) is an affine map.

Definition 3.14 (Affine bundle isomorphism). An affine bundle morphism (Φ, φ) that is also a bundle iso-
morphism is said to be a affine bundle isomorphism. This is precisely the case if (Φ−1, φ−1) is defined and
an affine bundle morphism as well.
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π

Uα × Rk

Uβ × Rk

ab
ρβα(π(a))▷ρβα(π(b))▷

∃ρβα : Uα ∩ Uβ → GL(k,R) smooth

β(a) = ρβα (π(a)) ▷ α(a)

β(b) = ρβα (π(b)) ▷ α(b)Uα

Uβ

(π,α)

(π,β)

Figure 3.2: The Möbius strip may be given a
GL(1,R)-compatible bundle atlas that qualifies it as
a vector bundle.

π

Uα × Rk

Uβ × Rk

ab

ρβα(π(a))▷
ρβα(π(b))▷

∃ρβα : Uα ∩ Uβ → GA(k,R) smooth

β(a) = ρβα (π(a)) ▷ α(a)

β(b) = ρβα (π(b)) ▷ α(b)Uα

Uβ

(π,α)

(π,β)

Figure 3.3: Alternatively, the Möbius strip may be
given a GA(1,R)-compatible bundle atlas that ren-
ders it into an affine bundle.

Definition 3.15 (Affine bundle modelled on a vector bundle). Let π⃗ : E⃗ →M be a vector bundle with typical

fibre V . An affine bundle modelled on π⃗ : E⃗ →M is a fibre bundle π : E →M over the same base manifold
M whose typical fibre A is an affine space (A, V,⊞) modelled on V with the following properties:

1. A is equipped with a k-dimensional real affine space structure (A, V,⊞) compatible with its smooth struc-
ture (in the sense that any linear isomorphism φ : V → Rk and any affine isomorphism ϕ : A → Rk are
diffeomorphisms, thus also rendering ⊞ : A× V → A and ⊟ : A×A→ V smooth)

2. for any point p ∈ M , the fibre Ep is equipped with the structure of an affine space (Ep, E⃗p,⊞p) modelled

on the fibre E⃗p of the vector bundle

3. there exist a bundle atlas B of π : E →M consisting of fibre-wisely affine bundle charts, i.e.,

∀α ∈ B : ∀p ∈ π [Dom(α)] :
(
α|Ep

: Ep → A is an affine isomorphism
)
, (3.33)

and such that for any bundle chart α ∈ B there exists a vector bundle chart α⃗ of π⃗ : E⃗ → M with
π⃗ [Dom (α⃗)] = π[Dom(α)] such that

∀p ∈ π[Dom(α)] :
−−→
α|Ep

= α⃗|E⃗p
. (3.34)

Lemma 3.6 (Affine bundle chart induces vector bundle chart). Let π : E → M be an affine bundle modelled

on π⃗ : E⃗ →M . For every affine bundle chart α of π : E →M there exists a vector bundle chart α⃗ of π⃗ : E⃗ →M
with π⃗ [Dom(α⃗)] = π[Dom(α)] such that for every point p ∈ π[Dom(α)] it holds that

−−→
α|Ep

= α⃗|E⃗p
. (3.35)

Proof 3.6. The obvious candidate for the wanted vector bundle chart is given by

α⃗ : π⃗−1 [π[Dom(α)]] → V, a⃗ 7→ −−−−→
α|Eπ⃗(a⃗)

(⃗a). (3.36)

We have to show that it is a vector bundle chart. First, note that for any p ∈ π[Dom(α)] the restriction

α⃗|E⃗p
=

−−→
α|Ep

: E⃗p → V is a linear isomorphism, being that α|Ep
: Ep → A is an affine isomorphism. It is left to

show that

(π⃗, α⃗) : π⃗−1 [π[Dom(α)]] → π[Dom(α)]× V (3.37)

19



is a diffeomorphism. Let p ∈ π[Dom(α)] and let β be an affine bundle chart of π : E → M with the property

that there exists a vector bundle chart of π⃗ : E⃗ → M with p ∈ π⃗[Dom(β⃗)] = π[Dom(β)] and such that for all

q ∈ π[Dom(β)] it holds that β⃗|E⃗q
=

−−→
β|Eq , whose existence is guaranteed by definition 3.15. We want to show

that

α⃗ ◦ (π⃗, β⃗)−1(q, v) =
−−−−→
ραβ(q)(v). (3.38)

depends smoothly on q ∈ π[Dom(α)] ∩ π[Dom(β)] and v ∈ V . To this end, fix an affine diffeomorphism

ϕ : A→ Rk. Note that ϕ⃗ : V → Rk is a linear diffeomorphism. In proof of proposition 3.5 we have seen that

ρα̃β̃ : π[Dom(α)] ∩ π[Dom(β)] → GA(k,R), q 7→ ϕ ◦ α|Eq
◦ β|−1

Eq
◦ ϕ−1 (3.39)

and thus also

ρ⃗α̃β̃ : π[Dom(α)] ∩ π[Dom(β)] → GL(k,R), q 7→ ϕ⃗ ◦ −−→α|E⃗q
◦ −−→β|E⃗q

−1 ◦ ϕ⃗−1 (3.40)

are smooth. Consequently, the expression

ϕ⃗ ◦ α⃗ ◦ (π⃗, β⃗)−1(q, ϕ⃗−1(ξ)) = ρ⃗α̃β̃(q)(ξ) (3.41)

depends smoothly on q and ξ ∈ Rk. Since ϕ⃗ : V → R is a global chart of V , smoothness of (3.38) is proven. By

symmetry, also β⃗ ◦ (π⃗, α⃗)−1(q, v) depends smoothly on q and v. This concludes the proof.

Remark 3.6 (Every affine bundle modelled on a vector bundle is an affine bundle). It is immediate that an

affine bundle π : E → M modelled on a vector bundle π⃗ : E⃗ → M is an affine bundle, thus justifying the
terminology. The converse holds true as well. Every affine bundle π : E → M is modelled on some vector
bundle π⃗ : E⃗ →M . This is the subject of the theorem 3.7.

Theorem 3.7 (Every affine bundle is modelled on a vector bundle). For any affine bundle π : E → M there

exists a vector bundle π⃗ : E⃗ →M such that π : E →M is modelled on π⃗ : E⃗ →M . Moreover, the vector bundle
π⃗ : E⃗ →M is unique up to vector bundle isomorphism.

Proof 3.7. Suppose we are given an affine bundle π : E →M of rank k with affine bundle atlas B = {αi : π
−1[Ui] →

A | i ∈ I}. The proof naturally splits into two parts: the existence of a vector bundle π⃗ : E⃗ → M such that

π : E →M is modelled on π⃗ : E⃗ →M and its uniqueness up to vector bundle isomorphism.

Subproof (Existence). For simplicity, let us assume that the fibre A = Rk is chosen, cf. proof of proposition 3.5.
We will investigate the collection {ρji : Ui ∩ Uj → GA(k,R) | i, j ∈ I : Ui ∩ Uj ̸= ∅} of transition functions of
the affine bundle atlas B of π : E → M . For any i, j ∈ I and any p ∈ Ui ∩ Uj , the map ρji(p) : Rk → Rk is

an affine isomorphism. Hence there exists a unique linear isomorphism
−−−→
ρji(p) : Rk → Rk such that for any

r ∈ Rk it holds that ρji(p)(r) = ρji(p)(0) +
−−−→
ρji(p)(r). We thus can define the map

ρ⃗ji : Ui ∩ Uj → GL(k,R), p 7→ −−−→
ρji(p) (3.42)

for any i, j ∈ I with non-empty bundle chart domain intersection Ui∩Uj ̸= ∅, providing us with the collection
of maps {ρ⃗ji : Ui ∩ Uj → GL(k,R) | i, j ∈ I : Ui ∩ Uj ̸= ∅}.
We would like to promote this collection of maps to bundle chart transition functions of a newly constructed
vector bundle. Luckily, we have a theorem at hand whose purpose is precisely that: the Fibre bundle
construction theorem. All we have to do is show that {ρ⃗ji : Ui ∩ Uj → GL(k,R) | i, j ∈ I : Ui ∩ Uj ̸= ∅} meets
the hypothesis of the theorem.

Subproof ({Ui | i ∈ I} is an open cover of M). This is immediate from the fact that B = {αi | i ∈ I} is an
(affine) bundle atlas for π : E →M .
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Subproof (Cocycle conditions). The proof of proposition 3.5 shows that bundle atlas B is (GA(k,R), )-
compatible. As such, it satisfies the cocycle conditions from proposition 3.1. This means that, one the one
hand, for any affine bundle chart αi ∈ B and any point p ∈ Ui it holds that ρii(p) = idRk , cf. eq. (3.2). A

direct calculation then shows that the associated linear map satisfies
−−−−→
ραα(p) = idRk , which is precisely the

identity element of GL(k,R). On the other hand, for any i, j, k ∈ I it holds that ρki(p) = ρkj(p) ◦ ρji(p),
cf. eq. (3.3). Proposition D.1 states that the associated linear map is given by the composition, i.e.,−−−→
ρki(p) =

−−−→
ρkj(p) ◦

−−−→
ρji(p). In summary, {ρ⃗ji | i, j ∈ I : Ui ∩ Uj ̸= ∅} satisfies the cocycle conditions of the

hypothesis of theorem 3.3.

Subproof (Smoothness). It is left to show that for any i, j ∈ I that satisfy Ui∩Uj ̸= ∅ the map ρ⃗ij : Ui∩Uj →
GL(k,R) is smooth. For starters, note that for any p ∈ Ui ∩ Uj and any 1 ≤ n ≤ k it holds that

ρji(p)(en) = ρji(p)(0) + ρ⃗ji(p)(en). (3.43)

Given that ρji : Ui ∩ Uj → GA(k,R) is smooth, we conclude that for any 1 ≤ m,n ≤ k the map

[ρ⃗ji]
n
m : Ui ∩ Uj → R, p 7→ (ρ⃗ji(p)(en))

m
= (ρji(p)(em)− ρji(p)(0))

n
(3.44)

is also smooth. This map, however, is precisely the coordinate-representation of ρ⃗ji : Ui ∩ Uj → GL(k,R)
with respect to a global chart of GL(k,R). We conclude that ρ⃗ji : Ui ∩ Uj → GL(k,R) is smooth.

This concludes the proof that {ρ⃗ji | i, j ∈ I : Ui ∩ Uj ̸= ∅} satisfies the hypotheses of the Fibre bundle
construction theorem. In combination with the result of proposition 3.4, this assures that there exists a
vector bundle π⃗ : E⃗ →M with typical fibre Rk and vector bundle atlas B⃗ whose transition functions are given
by {ρ⃗ji | i, j ∈ I : Ui ∩ Uj ̸= ∅}. It remains to show that π : E →M is modelled on π⃗ : E⃗ →M .

To this end, we first express the affine structure of the fibres of π : E →M in terms of the fibres of π⃗ : E⃗ →M .
Let p ∈ M and i ∈ I such that p ∈ π[Dom(αi)]. Note that there is a vector bundle chart α⃗i ∈ B⃗ associated
with the index i ∈ I as well. The affine structure of the fibre Ep is the one acquired from the bijection

α|Ep : Ep → Rk. We can use the linear isomorphism α⃗i|E⃗p
: E⃗p → Rk in order to treat Ep as an affine space

modelled on E⃗p. Define

⊞p : Ep × E⃗p → Ep, (a, a⃗) 7→ αi|−1
Ep

(αi(a) + α⃗i(⃗a)) . (3.45)

In fact, the above definition does not depend on the index i ∈ I and is thus well-defined. For, if j ∈ I is
another index such that p ∈ Uj , then

αj |−1
Ep

(αj(a) + α⃗j (⃗a)) = αi|−1
Ep

(ρij(p) (αj(a) + α⃗j (⃗a))) , (3.46)

= αi|−1
Ep

(ρij(p) (αj(a)) + ρ⃗ij(p) (α⃗j (⃗a))) , (3.47)

= αi|−1
Ep

(αi(a) + α⃗i(⃗a)) , (3.48)

where we used that ρji(p) is affine with
−−−→
ρji(p) = ρ⃗ji(p). A direct consequence is that for any a ∈ Ep and any

a⃗ ∈ E⃗p it holds that

αi (a⊞p a⃗) = αi(a) + α⃗i(⃗a). (3.49)

This concludes the proof that π : E →M is modelled on π⃗ : E⃗ →M .

Subproof (Uniqueness). Suppose that π̃ : Ẽ → M is another vector bundle with typical fibre Ṽ such that
π : E → M is modelled on π̃ : Ẽ → M . By lemma 3.6, there exists a bundle atlas B̃ = {α̃ | α ∈ B} of
π̃ : Ẽ → M such that for any α ∈ B it holds that π̃[Dom(α̃)] = π[Dom(α)] and for any point p ∈ π[Dom(α)]
we have the equality that

∀a ∈ Ep : ∀ã ∈ Ẽp : α|Ep
(a ⊞̃p ã) = α|Ep

(a) ⊞̃ α̃|Ẽp
(ã). (3.50)
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Let ϕ : A→ Rk be an affine isomorphism. It is a diffeomorphism due to item (1) of definition 3.12. Note that

there are associated two linear isomorphisms ϕ⃗ : V → Rk and ϕ̃ : Ṽ → Rk that satisfy

∀a ∈ A : ∀v ∈ V : ϕ(a ⊞⃗ v) = ϕ(a) + ϕ⃗(v) (3.51)

and
∀a ∈ A : ∀ṽ ∈ Ṽ : ϕ(a ⊞̃ ṽ) = ϕ(a) + ϕ̃(ṽ), (3.52)

respectively. By item (1) of definition 3.15 they are also diffeomorphisms. Consequently, there exists a
canonical linear diffeomorphism between the typical fibres V and Ṽ

I := ϕ̃−1 ◦ ϕ⃗ : V → Ṽ . (3.53)

It is canonical in the sense that it does not depend on the choice of the affine isomorphism ϕ : A → Rk. We
can now define the map

Φ: E⃗ → Ẽ, a⃗ 7→ (π̃, α̃)−1 ◦ (idM , I) ◦ (π⃗, α⃗)(⃗a) for α ∈ B : a⃗ ∈ π⃗[Dom(α⃗)], (3.54)

which is well-defined since it can easily be checked that Φ(⃗a) = (a ⊞⃗p a⃗) ⊟̃p a holds for all a ∈ Ep and all

a⃗ ∈ E⃗p, where p ∈ M . Since I : V → Ṽ is a diffeomorphism, the map Φ: E⃗ → Ẽ turns out to be a
diffeomorphism. By definition, the map Φ satisfies π̃ ◦Φ = π⃗ and therefore qualifies as a bundle isomorphism
along idM . It now suffices to read off that the restriction

Φ|E⃗p
= α̃|−1

Ẽp
◦ I ◦ α⃗|E⃗p

: E⃗p → Ẽp (3.55)

is a linear isomorphism, in order to conclude the proof that Φ: E⃗ → Ẽ is a vector bundle isomorphism along
idM .

Remark 3.7. For the fans of category theory: The first part of the above theorem can be used in order to define
a functor from the category of affine bundles to the category of vector bundles.

Lemma 3.8 (Subtraction and addition of local sections). Let π : E → M be an affine bundle modelled on

π⃗ : E⃗ →M . The subtraction
s1 ⊟

Γ(E|U )
s2 : U → E, p 7→ s1(p)⊟

p
s2(p) (3.56)

of two local sections s1 : U → E and s2 : U → E over U ∈ OM is a local section of π⃗ : E⃗ → M . Similarly, the
addition

s ⊞
Γ(E|U )

s⃗ : U → E, p 7→ s(p)⊞
p
s⃗(p) (3.57)

of local sections s : U → E and s⃗ : U → E over U ∈ OM of π : E → M and π⃗ : E⃗ → M , respectively, is a local
section of π : E →M .

Proof 3.8. Without loss of generality, assume that the typical fibres are chosen to be Rk for suitable k ∈ N.
Let B be an affine bundle atlas for π : E → M and let B⃗ = {α⃗ | α ∈ B} be the derived vector bundle atlas for

π⃗ : E⃗ →M such that for any α ∈ B it holds that π⃗[Dom(α⃗)] = π[Dom(α)] and for any point p ∈ π[Dom(α)] we

have the equality α⃗|E⃗p
=

−−→
α|Ep

.

Subproof (Subtraction). Let α ∈ B. For p ∈ π[Dom(α)] we have

α⃗ ◦
(
s1 ⊟

Γ(E|U )
s2

)
(p) = α⃗

(
s1(p)⊟

p
s2(p)

)
(3.58)

= α ◦ s1(p)− α ◦ s2(p), (3.59)

which clearly depends smoothly on p. This proves the first part.
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Subproof (Addition). Let α ∈ B. For p ∈ π[Dom(α)] we have

α ◦
(
s ⊞
Γ(E|U )

s⃗

)
(p) = α

(
s(p)⊞

p
s⃗(p)

)
(3.60)

= α ◦ s(p) + α⃗ ◦ s⃗(p), (3.61)

which clearly depends smoothly on p. This concludes the second part.

Corollary 3.9. An immediate consequence is that the affine combination

⊞Γ(E|U )∑

i=1..k

λisi : U → E, p 7→
⊞p∑

i=1..k

λi(p)si(p) (3.62)

of local sections s1, . . . , sk : U → E, with respect to the weights λ1, . . . , λk ∈ C∞(U) that satisfy

∀p ∈ U :
∑

i=1..k

λi(p) = 1, (3.63)

is a local section of π : E →M . Refer to Definition D.4 (Affine combination).

Proposition 3.10. Every affine bundle admits a global section.

Proof 3.10. Let π : E → M be an affine bundle of rank k. For simplicity, let us assume that the typical fibre
Rk was chosen, cf. proof of proposition 3.5. Let B be an affine bundle atlas of π : E → M . Since M is
paracompact, we can assume without loss of generality that the open cover U := {π[Dom(α)] | α ∈ B} is locally
finite. Furthermore, there exists a partition of unity {λα | α ∈ B} subordinate to U . For each α ∈ B, the map

Xα : π[Dom(α)] → E, p 7→ (π, α)−1(p, 0) (3.64)

is a local section. Using the partition of unity {λα | α ∈ B} we can define the map

X : M → E, p 7→
⊞Ep∑

α∈B : λα(p)̸=0

λα(p)Xα(p), (3.65)

where we used the affine combination in each fibre Ep. Fix a point p ∈M . We show that X : M → E is smooth
at p. Since U is locally finite, there exists a neighbourhood Wp ∈ OM of p that intersects only finitely many
elements of U . Define

W̃p :=
⋂

{π[Dom(α)] ∩Wp | α ∈ B : p ∈ π[Dom(α)]} . (3.66)

This a neighbourhood of p due to the fact that it is a finite intersection of neighbourhoods of p. The restriction
of X to W̃p is given by

X|W̃p
=

⊞Γ(E|
W̃p

)∑

α∈B : λα|W̃p
̸=0

λαXα. (3.67)

This, however, is a smooth map due to corollary 3.9. We have constructed a global section of π : E →M .

Proposition 3.11. Let π : E → M be an affine bundle modelled on a vector bundle π⃗ : E⃗ → M . Then there
exists an affine bundle isomorphism between π⃗ : E⃗ →M and π : E →M .
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Proof 3.11. Let s : M → E be a global section of π : E → M . Its existence is guaranteed by proposition 3.10.
Given the global section s : M → E, it is straightforward to propose a derived candidate for the desired affine
bundle isomorphism

Φs : E⃗ → E, a⃗ 7→ s (π⃗(⃗a)) ⊞
π⃗(a⃗)

a⃗. (3.68)

It is straightforward to check that it is indeed an affine bundle isomorphism. By definition, we implemented that
π ◦Φs = π⃗. In order to verify that Φs is smooth at any point a⃗ ∈ E⃗, pick an affine bundle chart α of π : E →M
such that π⃗(⃗a) ∈ π[Dom(α)]. Denote by α⃗ the vector bundle chart of π⃗ : E⃗ →M that comes associated to α by
means of lemma 3.6. Then for any p ∈ π[Dom(α)] and any ξ ∈ v we have

α ◦ Φs ◦ (π⃗, α⃗)−1(p, ξ) = α|Ep

(
s ◦ π⃗ ◦ (π⃗, α⃗)−1(p, ξ)⊞p(π⃗, α⃗)

−1(p, ξ)
)

(3.69)

= α ◦ s(p)⊞−−→
α|Ep

(
(π⃗, α⃗)−1(p, ξ)

)
(3.70)

= α ◦ s(p)⊞ ξ, (3.71)

where we used that
−−→
α|Ep

= α⃗|E⃗p
. Since ⊞ is smooth, by definition 3.15, it follows that Φs is indeed smooth.

The above equality lets us directly verify that Φs is fibre-wisely affine. For if ξ, η ∈ V , then

α ◦ Φs ◦ (π⃗, α⃗)−1(p, ξ + η) = α ◦ s(p)⊞ (ξ + η) (3.72)

= (α ◦ s(p)⊞ ξ)⊞ η (3.73)

= α ◦ Φs ◦ (π⃗, α⃗)−1(p, ξ)⊞ η. (3.74)

This concludes the proof that Φs : E⃗ → E is an affine bundle morphism. It is left to check that it has a smooth
inverse. Its inverse is readily found to be

Φ−1
s : E → E⃗, a 7→ a ⊟

π(a)
s(π(a)). (3.75)

It is smooth at a ∈ Dom(α) since for any p ∈ π[Dom(α)] and any ξ ∈ A we have that

α⃗ ◦ Φ−1
s ◦ (π, α)−1(p, ξ) = α⃗

(
(π, α)−1(p, ξ)⊟

p
s ◦ π ◦ (π, α)−1(p, ξ)

)
(3.76)

=
−−→
α|Ep

(
(π, α)−1(p, ξ)⊟

p
s(p)

)
(3.77)

= α|Ep

(
(π, α)−1(p, ξ)

)
⊟ α|Ep

(s(p)) (3.78)

= ξ ⊟ α ◦ s(p) (3.79)

depends smoothly on ξ ∈ A and p ∈M . Note that we used
−−→
α|Ep

= α⃗|E⃗p
. This concludes the proof.

Corollary 3.12. An affine bundle modelled on a trivial vector bundle is trivial.

Remark 3.8. The fact that any affine bundle admits a global section allows us to understand affine bundles
entirely in terms of the vector bundles that they are modelled on.

Proposition 3.11 tells us that every affine bundle π : E →M can be made into a vector bundle by prescription
of a global section as null section. Viewing affine bundles as (GA(k,R), )-bundles, the result tells us that it is
always possible to reduce the structure group from GA(k,R) to its Lie subgroup GL(k,R).

Observe that the resulting vector bundle π⃗ : E⃗ →M is such that π : E →M is modelled on π⃗ : E⃗ →M .
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4 Principal bundles

Definition 4.1. Let ◁ : M ×G→M and ◀ : M ′×G′ →M ′ be two Lie group right actions and let ρ : G→ G′

be a Lie group homomorphism.

A smooth map f : M →M ′ is said to be ρ-equivariant if the diagram

M ×G M ′ ×G′

M M ′

◁

f×ρ

◀

f

commutes. That is, if

∀g ∈ G : ∀p ∈M : f(p ◁ g) = f(p) ◀ ρ(g). (4.1)

Definition 4.2 (Principal bundle). Let π : P → M be a fibre bundle with typical fibre given by a Lie group
(G,OG,AG, •) and let ◁ : P ×G→ P be a Lie group right action. π : P →M is said to be a principal bundle
with respect to ◁ if:

1. the Lie group right action ◁ is free,

2. the Lie group right action ◁ is fibre-preserving, i.e.,

∀g ∈ G : π ◦ (◁g) = π, (4.2)

3. there exists a bundle atlas B for π : P →M , called principal bundle atlas, with the property that each
(principal) bundle chart α ∈ B is idG-equivariant, i.e.,

∀a ∈ Dom(α) : ∀g ∈ G : α(a ◁ g) = α(a) • g. (4.3)

Lemma 4.1. A principal bundle atlas B is (G, •)-compatible, with • : G×G→ G regarded as a left action.

Proof 4.1. First note that the Lie group left action • : G×G→ G is effective, since (G, •) is a group.

Let α, β ∈ B such that π[Dom(α)] ∩ π[Dom(β)] ̸= ∅. Then define the map

ρβα : π[Dom(α)] ∩ π[Dom(α)] → G, p 7→ β ◦ (π, α)−1(p, e). (4.4)

Note that this map is smooth by definition. Let p ∈ π[Dom(α)] ∩ π[Dom(β)] and g ∈ G. Observe that

(π, α)
(
(π, α)−1(p, e) ◁ g

)
=
(
p, α

(
(π, α)−1(p, e)

)
• g
)

(4.5)

= (p, g), (4.6)
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π

Uα ×G

Uβ ×G

◁g

∃!g ∈ G : b = a ◁ g

ab

•g

•g

ρβα(π(a))▷ρβα(π(b))▷

α(a ◁ g) = α(a) • g
β(a ◁ g) = β(a) • g

ρβα : Uα ∩ Uβ → G : p 7→ β
(
(π, α)−1(p, e)

)Uα

Uβ

(π,α)

(π,β)

Figure 4.1: If we remove a section from the Möbius strip, we obtain a principal bundle
with structure group GL(1,R). In fact, it is the principal bundle associated to the Möbius
strip interpreted as a vector bundle from fig. 3.2.

where we used items (2) and (3) from definition 4.2. Consequently,

(π, α)−1(p, g) = (π, α)−1(p, e) ◁ g. (4.7)

We can use this result in order to deduce that

β ◦ (π, α)−1
(p, g) = β

(
(π, α)−1(p, e) ◁ g

)
(4.8)

= β
(
(π, α)−1(p, e)

)
• g (4.9)

= ρβα(p) • g, (4.10)

where we used item (3) once more and recognized our previously defined map ρβα. This concludes the proof.

Corollary 4.2. A principal bundle π : P → M with respect to a Lie group right action ◁ : P × G → P is a
fibre bundle with effective structure group action with respect to left translation • : G×G→ G.

Theorem 4.3 (Principal bundle of the translation group is trivial). Suppose that π : E → M is a principal
bundle with respect to a Lie group right action ◁ : E × Rk → E of the translation group (Rk,+).

π : E →M is an affine bundle modelled on a trivial vector bundle.

Consequently, by corollary 3.12, π : E →M is trivial.

Proof 4.3. Let B a principal bundle atlas for π : E → M . By lemma 4.1, B is (Rk,+)-compatible. Since the
general affine group GA(k,R) = Rk ⋊GL(k,R) can be expressed as the semidirect product of Rk by the general
linear group GL(k,R), it is also true that B is (GA(k,R), )-compatible. We established that π : E → M is an

affine bundle. Theorem 3.7 states that there exists a vector bundle π⃗ : E⃗ →M such that π : E →M is modelled
on π⃗ : E⃗ → M . Moreover, lemma 3.6 guarantees the existence of a vector bundle atlas B⃗ = {α⃗ | α ∈ B} for

π⃗ : E⃗ → M with the property that for every α ∈ B it holds that π[Dom(α)] = π⃗[Dom(α⃗)] and such that for

every point p ∈ π[Dom(α)] we have the equality
−−→
α|Ep = α⃗|E⃗p

.
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Let us take a closer look at the induced vector bundle atlas B⃗. We claim that we can build a global vector
bundle chart for π⃗ : E⃗ →M starting from the vector bundle atlas B⃗. For, if α, β ∈ B are principal bundle charts
of π : E →M then for any point p ∈ π[Dom(α)] ∩ π[Dom(β)] and any v ∈ Rk it holds that

(
β|Ep

◦ α|−1
Ep

)
(v) =

(
β|Ep

◦ α|Ep

)
(0) + v, (4.11)

where we used that B is (Rk,+)-compatible. By direct comparison, we read off that

β⃗|E⃗p
◦ α⃗|−1

E⃗p
=

−−→
β|Ep

◦ −−→α|Ep

−1
=

−−−−−−−−→
β|Ep

◦ α|−1
Ep

= idRk , (4.12)

where we used that
−−→
α|Ep

= α⃗|E⃗p
and

−−→
β|Ep

= β⃗|E⃗p
. This tells us that all the vector bundle charts of B⃗ agree on

their respective domain overlaps. Thus we can extend the vector bundle charts of B⃗ to a global vector bundle
chart or, alternatively, define the vector bundle isomorphism

Φ: M × Rk → E⃗, (p, v) 7→ (π⃗, α⃗)−1(p, v). (4.13)

This proves that π⃗ : E⃗ →M is trivial. Consequently, π : E →M is also trivial.

Remark 4.1. Theorem 4.3 is the first central result of this work. Applied to teleparallel gravity in particular it
states that the principal bundle P of teleparallel gravity (with structure group given by the translation group
R4) is trivial. Given a affine bundle isomorphism (in this context usually referred to as solder form) between
this principal bundle P and the tangent bundle TM of the base manifold M , it follows that the tangent bundle
TM itself is trivial. In other words, the base manifold M is parallelizable.

The rest of this work will discuss whether or not the result of theorem 4.3 represents some obstruction to the
applicability of teleparallel gravity. To this end, we will continue introducing more concepts in order to be able
to define covariant derivative operators and parallel transport systems on vector bundles. This will allow us to
discuss the holonomy of the tangent bundle of the base manifold M . We will see that for a simply-connected
spacetime M , a curvature-free metric-compatible covariant derivative operator exists if and only if a global
orthonormal frame exists. Note that the latter is a stronger condition than parallelizability.

Finally we discuss that a non-compact spacetime admits a spin structure if and only if a global orthonormal
frame exists. Even in the non-simply-connected case, this means that a teleparallel formulation is possible for
all spacetimes that admit a spin structure.

For now, we will resume our journey with the construction of the most prominent principal bundle that we will
encounter. The frame bundle of a vector bundle.

Proposition 4.4. Let π : E → M be a vector bundle of rank k with vector bundle atlas B. For every point
p ∈M , denote by Fr(E)p the set of bases of Ep.

Define the set

Fr(E) :=
⋃

{Fr(E)p | p ∈M} , (4.14)

a projection on Fr(E) given by

π̂ : Fr(E) →M, (e1, . . . , ek) 7→ p such that (e1, . . . , ek) is a basis of Ep, (4.15)

a right action of GL(k,R) on Fr(E) given by

◁ : Fr(E)×GL(k,R) → Fr(E), ((e1, . . . , ek) , A) 7→ (Am
1em, . . . , A

m
kem) , (4.16)

and a principal bundle atlas B̂ given by

B̂ :=
{
α× · · · × α : π̂−1 [π[Dom(α)]] 7→ GL(k,R) | α ∈ B

}
. (4.17)
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Then π̂ : Fr(E) →M is a principal bundle with respect to ◁ : Fr(E)×GL(k,R) → Fr(E).

Proof 4.4. This is example is important enough for us to go through the details of theorem 2.1.

Subproof (π̂ : Fr(E) → M is a surjection). Let p ∈ M . Since π : E → M is a surjection, the fibre Ep over p
is non-empty. Every vector space admits a Hamel basis. (A zero-dimensional vector space has the empty set
as basis.) Hence there exists an element (e1, . . . , ek) ∈ Fr(E)p such that π̂ ((e1, . . . , ek)) = p.

Subproof (B̂ is a proto bundle atlas and (G, •)-compatible). We have to check items 1 to 4 from theorem 2.1.
Since π̂ : Fr(E) →M is a surjection, for any α ∈ B it holds that

π̂
[
π̂−1 [π[Dom(α)]]

]
= π[Dom(α)]. (4.18)

This is enough for us to verify items 1 and 2. That are, for any α̂ ∈ B̂ it holds that Dom(α̂) = π̂−1[π̂[Dom(α̂)]]
and the collection {π̂[Dom(α̂)] | α̂ ∈ B̂} is an open cover of M .

Next let α̂ ∈ B and α ∈ B such that α̂ = α× · · · × α. Let us convince ourselves that the map

(π̂, α̂) : Dom(α̂) → π̂[Dom(α̂)]×GL(k,R),

(e1, . . . , ek) 7→


π(e1),



α1(e1) . . . α1(ek)

...
. . .

...
αk(e1) . . . αk(ek)







(4.19)

is a bijection. To this end, it suffices to remember that for any point p ∈ M the map α|Ep : Ep → Rk is a
linear isomorphism and note that

Φα : π̂[Dom(α̂)]×GL(k,R) → Dom(α̂),

(p,A) 7→
(
α|−1

Ep

(
A1

1, . . . , A
k
1

)
, . . . , α|−1

Ep

(
A1

k, . . . , A
k
k

)) (4.20)

is the desired inverse of (π̂, α̂). Φα is well-defined due to the fact that for any A ∈ GL(k,R) the columns of A
form a basis for Rk and due to α|Ep

: Ep → Rk being a linear isomorphism. Because then Φα(p,A) is a basis
of Ep.

Finally, let us tackle item 4. Let α̂, β̂ ∈ B̂ and α, β ∈ B such that α̂ = α × · · · × α and β̂ = β × · · · × β. We
want to show that

(
π̂, β̂

)
◦ (π̂, α̂)−1

: π̂[Dom(α̂) ∩Dom(β̂)]×GL(k,R) → π̂[Dom(α̂) ∩Dom(β̂)]×GL(k,R)

(p,A) 7→
(
p,
(
β|Ep

◦ α|−1
Ep

(
A1

k, . . . , A
k
1

)
, . . . , β|Ep

◦ α|−1
Ep

(
Ak

1, . . . , A
k
k

))) (4.21)

is a smooth. We immediately recognize the GL(k,R)-valued transition function ρβα of the vector bundle atlas
B. For 1 ≤ i ≤ k. we have

β|Ep
◦ α|−1

Ep

(
A1

i, . . . , A
k
i

)
=
(
ρβα(p)

1
mA

m
i, . . . , ρβα(p)

k
mA

m
i

)
. (4.22)

Here we recognize the group operation

• : GL(k,R)×GL(k,R) → GL(k,R),
(B,C) 7→

(
B1

mC
m

1, . . . , B
k
mC

m
1, . . . , B

1
mC

m
k, . . . , B

k
mC

m
k

) (4.23)

Altogether, we obtain (
π̂, β̂

)
◦ (π̂, α̂)−1

: (p,A) 7→ (p, ρβα(p) •A) , (4.24)

which is smooth since ρβα and • are smooth. This also already proves that B̂ is (G, •)-compatible.
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Subproof (α̂ ∈ B̂ is idG-equivariant). Let α̂ ∈ B and α ∈ B such that α̂ = α × · · · × α. Then for any
A ∈ GL(k,R) and (e1, . . . , ek) ∈ Dom(α̂):

α̂ ((e1, . . . , ek) ◁ A) = α̂ ((Am
1em, . . . , A

m
kem))

= (α(Am
1em), . . . , α(Am

kem))

=



Am

1α
1(em) . . . Am

kα
1(em)

...
. . .

...
Am

1α
k(em) . . . Am

kα
k(em)




= α̂ (e1, . . . , ek) •A.

This proves that α̂ is idG-equivariant. It is left to show that ◁ is indeed a Lie group right action.

Subproof (◁ is a free and fibre-preserving Lie group right action). Let us first show that ◁ is smooth. We can
make use of the result of the last item. Simply set (e1, . . . , ek) = (π̂, α̂)−1(p,B) for some p ∈ π̂[Dom(α̂)] and
B ∈ GL(k,R). The last equation then becomes

(π̂, α̂)
(
(π̂, α̂)

−1
(p,B) ◁ A

)
= (p,B •A) . (4.25)

This proves that ◁ is smooth.

It is fairly straightforward to check that ◁ : Fr(E) × GL(k,R) → Fr(E) is a right action. By design, ◁ also
preserves fibres. That is, for every g ∈ G, it holds that π̂ ◦ (◁g) = π̂. It is left to show that ◁ is free.

Let (e1, . . . , ek) ∈ Fr(E) and A ∈ GL(k,R) such that (e1, . . . , ek) ◁ A = (e1, . . . , ek). That is, for 1 ≤ i ≤ k it
holds that

Am
iem = ei. (4.26)

But (e1, . . . , ek) is a basis of Eπ̂((e1,...,ek)). Thus A is the identity of GL(k,R) and, consequently, ◁ is free.

This concludes the proof that π̂ : Fr(E) → M is a principal bundle with respect to the Lie group right action
◁ : Fr(E)×GL(k,R) → Fr(E).

Definition 4.3 (Frame bundle). π̂ : Fr(E) →M is called the frame bundle of π : E →M .

Example 4.1. Observe that the Möbius strip as a principal bundle from fig. 4.1 is the frame bundle of the
Möbius strip as a vector bundle from fig. 3.2.

Remark 4.2. As seen above, constructing a fibre bundle, let alone a principal bundle, is a fair amount of work.

In a very similar fashion in which we established the Fibre bundle construction theorem in order to facilitate
the construction of fibre bundles with effective structure group action, we will now pave the way towards the
Principal bundle construction theorem below.

Definition 4.4 (Structure group reduction). Let π : P → M be a principal bundle with respect to the Lie
group right action ◁ : P × G → P . Let P ′ ⊆ P be an embedded submanifold of P and let G′ ⊆ G be a Lie
subgroup of G.

The restriction π|P ′ : P ′ → M is said to be a structure group reduction from G to G′ of π : P → M if it
is a principal bundle with respect to the restriction ▷|G′×P ′ : P ′ ×G′ → P .

We shall encounter some structure group reductions in chapter 7.

Definition 4.5 (Principal bundle morphism). Let π : P →M and π′ : P ′ →M ′ be two principal bundles with
respect to the Lie group right actions ◁ : P ×G→ P and ◀ : P ′ ×G′ → P ′, respectively. Suppose we are given
two smooth maps Φ: P → P ′ and φ : M →M ′ and a Lie group homomorphism ρ : G→ G′.
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π π

◁(−1)

∃(−1) ∈ R \ {0} : b = a ◁ (−1)

ab

(R \ {0}, ·)-principal bundle ⇒ ({1,−1}, ·)-principal bundle

Figure 4.2: An exemplary visualization of a structure group reduction using the example of a Möbius
strip as principal bundle from fig. 4.1. The fact that the maximal structure group reduction has
structure group ({−1, 1}, ·) reflects the observation that the Möbius strip as a vector bundle (cf.
fig. 3.2) is not orientable.

We say that Φ is a ρ-principal bundle morphism along φ from π : P →M to π′ : P ′ →M ′ if it is a bundle
morphism along φ and ρ-equivariant, i.e.,

∀a ∈ P : ∀g ∈ G : Φ(a ◁ g) = Φ(a) ◀ ρ(g). (4.27)

Definition 4.6 (Principal bundle isomorphism). Let π : P → M and π′ : P ′ → M ′ be two principal bundles
with respect to Lie group right actions ◁ : P ×G→ P and ◀ : P ′×G′ → P ′, respectively. Suppose we are given
two diffeomorphisms Φ: P → P ′ and φ : M →M ′ and a Lie group isomorphism ρ : G→ G′.

We say that Φ is a ρ-principal bundle isomorphism along φ between π : P →M and π′ : P ′ →M ′ if Φ
is a ρ-principal bundle morphism along φ and Φ−1 is a ρ−1-principal bundle morphism along φ−1.

Lemma 4.5. Let π : P →M and π′ : P ′ →M be two principal bundles over M with respect to Lie group right
actions ◁ : P ×G→ P and ◀ : P ′ ×G→ P ′, respectively.

Then the following are equivalent:

1. Φ: P → P ′ is an idG-principal bundle isomorphism along idM between π : P →M and π′ : P ′ →M .

2. Φ: P → P ′ is an isomorphism of fibre bundles with effective structure group action • : G×G→ G.

Proof 4.5. Suppose first that Φ: P → P ′ is a idG-principal bundle isomorphism along idM . Let α ∈ B and
α′ ∈ B′ be principal bundle charts of π : P → M and π′ : P ′ → M , respectively, with the property that
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π[Dom(α)] ∩ π′[Dom(α′)] ̸= ∅. Then for every p ∈ π[Dom(α)] ∩ π′[Dom(α′)] and every g ∈ G, it holds that:

α′ ◦ Φ ◦ (π, α)−1(p, g) = α′ ◦ Φ ◦ (π, α)−1(p, e • g),
= α′ ◦ Φ

(
(π, α)−1(p, e) ◁ g

)
,

= α′ (Φ ◦ (π, α)−1(p, e) ◀ g
)
,

= α′ ◦ Φ ◦ (π, α)−1(p, e) • g.

Here we used that the maps α : Dom(α) → G, α′ : Dom(α′) → G and Φ: P → P ′ are idG-equivariant. It is left
to observe that the map

τα′α : π[Dom(α)] ∩ π′[Dom(α′)] → G, p 7→ α′ ◦ Φ ◦ (π, α)−1(p, e) (4.28)

is smooth.

Now suppose instead that Φ: P → P ′ is an isomorphism of fibre bundles with effective structure group action
• : G × G → G. Let a ∈ P and g ∈ G. There exist principal bundle charts α and α′ of π : P → M and
π′ : P ′ →M , respectively, such that π(a) ∈ π[Dom(α)] ∩ π′[Dom(α′)]. Then:

Φ(a ◁ g) = (π′, α′)
−1 ◦ (π′, α′) ◦ Φ ◦ (π, α)−1

(π(a), α(a ◁ g) ,

= (π′, α′)
−1 ◦ (π′, α′) ◦ Φ ◦ (π, α)−1

(π(a), α(a) • g) ,
= (π′, α′)

−1
(π(a), τα′α (π(a)) • α(a) • g) ,

= Φ(a) ◀ g.

We used that α : Dom(α) → G and α′ : Dom(α′) → G are idG-equivariant and that Φ: P → P ′ satisfies
equation (3.4) and preserves fibres, i.e., π′ ◦ Φ = π. The above equation tells us that Φ is an idG-principal
bundle homomorphism along idM . Applying the same reasoning to the inverse Φ−1 concludes the proof.

Corollary 4.6. Two principal bundles π : P → M and π′ : P ′ → M over M with respect to Lie group right
actions ◁ : P × G → P and ◀ : P ′ × G → P ′, respectively, that are idG-principal bundle isomorphic along idM
are also isomorphic as fibre bundles with effective structure group action • : G×G→ G.

This proves consistency of the two concepts of bundle isomorphism.

Lemma 4.7. The Lie group right action ◁ : P ×G → P of a principal bundle π : P → M acts transitively on
the fibres of π : P →M , i.e.,

∀a, b ∈ P : [π(a) = π(b) =⇒ ∃g ∈ G : b = a ◁ g] . (4.29)

Proof 4.7. Let a, b ∈ P such that π(a) = π(b). Let α ∈ B be a principal bundle chart of π : P → M at π(a).
The typical fibre of π : P → M is G. Consequently, we have α(a), α(b) ∈ G. Since G is a group, there exists
g ∈ G such that α(b) = α(a) • g. Using the fact that α is idG-equivariant, permits us to deduce that

α(b) = α(a) • g = α(a ◁ g). (4.30)

It follows that b = a ◁ g due to the fact that a and b lie in the same fibre.

Lemma 4.8. Let ◁ : M ×G→M be a free and transitive Lie group right action.

Then M is diffeomorphic to G.

Proof 4.8. Let p ∈M . We claim that the smooth map

p◁ : G→M, g 7→ p ◁ g (4.31)

is a diffeomorphism. We will show that by demonstrating that p◁ : G → M is a bijective constant rank map.
The constant rank theorem and the inverse function theorem then ensure that p◁ : G→M is a diffeomorphism.
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First note that p◁ : G → M is indeed a bijection. It is surjective since ◁ is transitive, and injective since ◁ is
free. Now suppose g, h ∈ G. Then, ◁ : M ×G→M being a right action, it holds that

(
p ◁
(
g • h−1

))
◁ h = p ◁ g. (4.32)

In other words, for all h ∈ G it holds that

p◁ = (◁h) ◦ (p◁) ◦
(
•h−1

)
. (4.33)

Taking the differential (p◁)∗,h at h yields

(p◁)∗,h = (◁h)∗,p ◦ (p◁)∗,e ◦
(
•h−1

)
∗,h . (4.34)

Recall that ◁h : M → M and ◁h−1 : M → M are smooth maps and mutual inverses. Hence ◁h : M → M is a
diffeomorphism. Analogously, •h−1 : G→ G is a diffeomorphism.

This proves that the rank of (p◁) : G→M is constant.

Corollary 4.9. Let π : P →M be a principal bundle with respect to the Lie group right action ◁ : P ×G→ P .

Then the fibres of π : P →M are isomorphic to the Lie group G.

Proof 4.9. Let p ∈M and denote by Pp the fibre π−1[{p}] over p. By item 3 of definition 4.2, the Lie group right
action ◁ is fibre-preserving. Recall as well that the fibre Pp is an embedded submanifold of P . Hence we can
define the restricted Lie group right action ◁p : Pp×G→ Pp acting on the fibre. By item 1 of definition 4.2, the
restricted Lie group right action ◁p acts freely on Pp. Furthermore, lemma 4.7 showed that ◁p acts transitively
on Pp. Lemma 4.8 then states that Pp is diffeomorphic to G.

Lemma 4.10. Let π : P → M be a principal bundle with respect to the Lie group right action ◁ : P ×G → P
and let ψ : U → P be a local section.

Then the smooth map
Ψ: U ×G→ π−1[U ], (q, g) 7→ ψ(q) ◁ g (4.35)

is a diffeomorphism with the property that its inverse Φ−1 = (π, α) gives rise to a principal bundle chart
α : π−1[U ] → G.

Proof 4.10. The smooth map Ψ: U × G → π−1[U ] is a bijection due to the following two facts. First, ◁ acts
freely and transitively on the fibres. Second, the local section Ψ: U → P hits each fibre over U exactly once.

Now let (p, g) ∈ U ×G. Suppose (X,A) ∈ TpU × TgG is such that

Ψ∗,(p,g)(X,A) = 0. (4.36)

Applying π∗,Ψ(p,g) to the above expression yields

0 = π∗,Ψ(p,g) ◦Ψ∗,(p,g)(X,A) = (π ◦Ψ)∗,(p,g) (X,A). (4.37)

But π ◦Ψ = pr1, so we conclude X = 0.

Furthermore, since ψ(p)◁ : G → Pp, g 7→ Φ(p, g) is a diffeomorphism (cf. corollary 4.9), A = 0 follows as well.
We conclude that Ψ has full rank at (p, g). The choice of (p, g) ∈ U × G was arbitrary. Therefore Ψ is not
only a bijection but has constant rank, and as such, is a diffeomorphism, as guaranteed by the constant rank
theorem and the inverse function theorem.

Now observe that the inverse map Ψ−1 : π−1[U ] × U × G satisfies pr1 ◦Ψ−1 = π. Consequently, we can write
Ψ−1 = (π, α) where α : π−1[U ] → G is a smooth map. We already showed that α is a bundle chart. It is left to
show that α is idG-equivariant and thus qualifies as a principal bundle chart. This is most easily done by direct
inspection of Ψ. Let p ∈M and g, h ∈ G. Then:

Ψ(p, h • g) = ψ(p) ◁ (h • g) = (ψ(p) ◁ h) ◁ g = Ψ(p, h) ◁ g. (4.38)

The result follows by applying α to both sides and letting h = α(a) for some a ∈ Pp.
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Corollary 4.11. A principal bundle is trivial if and only if it admits a global section.

Definition 4.7 (Parallelizable manifold). We say that a smooth manifold (M,OM ,AM ) is parallelizable if
its frame bundle π̂ : Fr(TM) → M is trivial. By corollary 4.11, this is the case if and only if there exists a
global frame for π : TM →M , thus the name parallelizable.

Lemma 4.12. Let π : P →M and π′ : P ′ →M ′ be two principal bundles with respect to Lie group right actions
◁ : P ×G → P and ◀ : P ′ ×G′ → P ′, respectively. Suppose we are given a diffeomorphism φ : M → M ′, a Lie
group isomorphism ρ : G→ G′ and a ρ-principal bundle morphism Φ along φ from π : P →M to π′ : P ′ →M ′.

Then Φ is a ρ-principal bundle isomorphism along φ between π : P →M and π′ : P ′ →M ′.

Proof 4.12. Note that if either P = ∅ or P ′ = ∅, then P = M = M ′ = P ′ = ∅, and the claim is vacuously
true. It suffices to note that P is empty if and only if M is empty, knowing that π : P → M is a surjection.
Analogously, P ′ is empty if and only if M ′ is empty. Finally, M is empty if and only if M ′ is empty due to
φ : M →M ′ being a diffeomorphism.

Subproof (Φ: P → P ′ is injective). Let a, b ∈ P such that Φ(a) = Φ(b). Then also π′ ◦Φ(a) = π′ ◦Φ(b). Using
the fact that Φ is a bundle morphism along φ, it follows that φ ◦ π(a) = φ ◦ π(b). In turn, since φ : M →M ′

is a diffeomorphism, we find that π(a) = π(b), i.e., a and b lie in the same fibre of π : P →M .

Recall that π : P →M is a principal bundle with Lie group right action ◁ : P ×G→ P . By lemma 4.7, ◁ acts
transitively on the fibres of π : P → M . That is, there exists an element g ∈ G that relates a and b through
b = a ◁ g.

Using the fact that Φ: P → P ′ is ρ-equivariant, we arrive at the conclusion that

Φ(a) = Φ(b) = Φ(a ◁ g) = Φ(a) ◀ ρ(g). (4.39)

Since ◀ is free, it follows that ρ(g) = eG′ . This is only possible if g = eG, due to the fact that ρ : G → G′ is
a Lie group isomorphism. Finally, b = a ◁ eG = a follows from the definition of a right action.

Subproof (Φ: P → P ′ is surjective). Let a′ ∈ P ′. Since φ : M → M ′ is a diffeomorphism we can compute
an element φ−1 ◦ π′(a′) in M . Choose an element b ∈ P (recall that π : P → M is a surjection) such that
π(b) = φ−1 ◦ π′(a′). Then Φ(b) and a′ lie in the same fibre of π′ : P ′ →M ′:

π′ ◦ Φ(b) = φ ◦ π(b) = π′(a). (4.40)

Since ◀ : P ′×G′ → P ′ acts freely and, as we have seen in lemma 4.7, transitively on the fibres, there exists a
unique g′ ∈ G′ that relates the two elements a′ and Φ(b) in the fibre π′−1

[{π′(a′)}] according to a′ = Φ(b) ◀ g′.

As Φ: P → P ′ is ρ-equivariant, we obtain:

a′ = Φ(b) ◀ g′ = Φ
(
b ◁ ρ−1(g′)

)
. (4.41)

We thus found an element a = b ◁ ρ−1(g′) ∈ P with the property that a′ = Φ(a).

Subproof (Φ−1 : P ′ → P is ρ−1-equivariant). Let a′ ∈ P ′ and g′ ∈ G′. Then,

Φ−1 (a′ ◀ g′) = Φ−1
(
Φ(Φ−1(a′)) ◀ ρ

(
ρ−1(g′)

))
, (4.42)

since both Φ: P → P ′ and ρ : G→ G′ are bijections. Using the fact that Φ is ρ-equivariant then yields

= Φ−1
(
Φ
(
Φ−1(a′) ◁ ρ−1(g′)

))
, (4.43)

= Φ−1(a′) ◁ ρ−1(g′). (4.44)

We conclude that Φ−1 : P ′ → P is ρ−1-equivariant, as desired.
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Subproof (Φ: P → P ′ is a diffeomorphism). Let p be a point in M , U a neighbourhood of p and ψ : U → P
a local section of π : P →M . Define the smooth maps

Ψ: U ×G→ π−1[U ], (q, g) 7→ ψ(q) ◁ g, (4.45)

and

Ψ′ : φ[U ]×G′ → π′−1
[φ[U ]] , (q′, g′) 7→

(
Φ ◦ ψ ◦ φ−1

)
(q′) ◀ g′. (4.46)

The subject of lemma 4.10 was to show that Ψ: U ×G→ π−1[U ] and Ψ−1 : φ[U ]×G′ → π′−1
[φ[U ]] are local

trivializations of π : P →M and π′ : P ′ →M ′, respectively.

Now let q ∈M and g ∈ G. Then:

(
Ψ′−1 ◦ Φ ◦Ψ

)
(q, g) = Ψ′−1

(ψ(q) ◁ g) , (4.47)

= Ψ′−1
(Φ (ψ(q)) ◀ ρ(g)) , (4.48)

= (φ(q), ρ(g)) . (4.49)

Here we used that Φ is ρ-equivariant. We observe that Φ: P → P ′ has constant rank, φ : M → M ′ and
ρ : G → G′ being diffeomorphisms. As a bijective constant rank map Φ: P → P ′ is a diffeomorphism. This
concludes the proof.

Proposition 4.13. Let π1 : P1 → M and π2 : P2 → M be two principal bundles over M with respect to Lie
group right actions ◁ : P1 ×G→ P1 and ◀ : P2 ×G→ P2, respectively.

Let I be such that {Ui | i ∈ I} is an open cover of M with the property that there exist principal bundle at-
lases B1 =

{
α1
i : π1

−1 [Ui] → Ui × F | i ∈ I
}
and B2 =

{
α2
i : π2

−1 [Ui] → Ui × F | i ∈ I
}
for π1 : P1 → M and

π2 : P2 →M , respectively.

Then π1 : P1 → M and π2 : P2 → M are idG-principal bundle isomorphic along idM if and only if there exists
a family of smooth maps {νi : Ui → G | i ∈ I} that relates the transition functions {ρ1ij : Ui ∩ Uj → G | i, j ∈
I : Ui ∩ Uj ̸= ∅} of B1 to the transition functions {ρ2ij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅} of B2 through

∀i, j ∈ I : ∀p ∈ Ui ∩ Uj : νi(p) • ρ1ij(p) = ρ2ij(p) • νj(p). (4.50)

Proof 4.13. We start off by proving the existence of an idG-principal bundle isomorphism along idM between
π : P1 →M and π : P2 →M provided the existence of the family of smooth maps {νi : Ui → G | i ∈ I}.

Subproof (Constructing a principal bundle isomorphism). We heavily rely on the first part of the proof of
proposition 3.2. We proved that

Φ: E1 → E2, a 7→
(
π2, α

2
i

)−1 (
π1(a), νi (π1(a)) • α1

i (a)
)
for i ∈ I : π1(a) ∈ Ui (4.51)

is an isomorphism of fibre bundles with effective structure group action • : G × G → G and consequently a
idG-principal bundle isomorphism along idM between π1 : P1 →M and π2 : P2 →M , due to lemma 4.5.

Subproof (Retrieving the family of smooth maps {νi : Ui → G | i ∈ I}). Let us now prove the second part of
the proposition. Suppose we are given an idG-principal bundle isomorphism Φ: P1 → P2 along idM between
π1 : P1 →M and π2 : P2 →M .

It suffices to note that Φ: P1 → P2 is an isomorphism of fibre bundles with effective structure group action
• : G×G→ G by lemma 4.5. We can then invoke the second part of the proof of proposition 3.2.

Theorem 4.14 (Principal bundle construction theorem). Let (M,OM ,AM ) be a non-empty smooth manifold
and (G,OG,AG, •) a Lie group.
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Suppose we are given I such that {Ui | i ∈ I} is an open cover ofM and {ρij : Ui∩Uj → G | i, j ∈ I : Ui∩Uj ̸= ∅}
is a collection of smooth maps satisfying the following cocycle conditions:

∀i ∈ I : ∀p ∈ Ui : ρii(p) = eG, (4.52)

∀i, j, k ∈ I : [Ui ∩ Uj ∩ Uk ̸= ∅ =⇒ ∀p ∈ Ui ∩ Uj ∩ Uk : ρik(p) = ρij(p) • ρjk(p)] . (4.53)

Then there exists a principal bundle π : P →M over M with respect to a Lie group right action ◁ : P ×G→ P
and a principal bundle atlas B =

{
αi : π

−1[Ui] → F | i ∈ I
}
whose transition functions agree with the set

{ρij• : Ui ∩ Uj → Diff(F ), p 7→ ρij(p)• | i, j ∈ I : Ui ∩ Uj ̸= ∅} . (4.54)

Moreover, by proposition 4.13, π : P →M is unique up to principal bundle isomorphism.

Proof 4.14. Let us review the constructive part of the proof of theorem 3.3.

We start off with the disjoint union of the patches Ui ×G

P :=
⋃

{Ui ×G× {i} | i ∈ I} ⊆M ×G× I (4.55)

as underlying set on which we establish an equivalence relation ∼ according to

∀(p, g, i), (q, h, j) ∈ E : [(p, g, i) ∼ (q, h, j) : ⇐⇒ p = q ∧ g = ρij(p) • h] . (4.56)

The quotient set P := P/∼ serves as underlying set for the total space of the fibre bundle to be constructed. It
turns out that both the projection

π : P →M, [(p, g, i)]∼ → p (4.57)

and the bundle atlas
B :=

{
αi : π

−1[Ui] → G, [(p, g, i)]∼ 7→ g | i ∈ I
}

(4.58)

are well-defined. Finally, the projection π : P → M together with the bundle atlas B is a fibre bundle with
effective structure group action • : G×G→ G. This was the subject of theorem 3.3.

It is now left to show that π : P → M is also canonically a principal bundle. To this end we will canonically
introduce a Lie group right action ◁ : P ×G→ P and then show that B is a principal bundle atlas. Define

◁ : P ×G→ P, ([(p, h, i)]∼ , g) 7→ [(p, h • g, i)]∼ . (4.59)

It is straightforward to check that ◁ is well-defined and indeed a right action. It is also manifestly fibre-preserving.
Let us check that it is also free. Suppose there exist [(p, g, i)]∼ ∈ P and h ∈ G such that [(p, g, i)]∼ ◁ h =
[(p, g, i)]∼. But then h = e. This proves that ◁ is free.

It is left to show that B is a principal bundle atlas. Let i ∈ I and recall the definition of the bundle chart

αi : π
−1[Ui] → G, [(p, g, i)]∼ 7→ g. (4.60)

We read off that αi is idG-equivariant with respect to the action ◁ of G on P .

Example 4.2. Suppose we are given two principal bundles π : P → M and π′ : P ′ → M with respect to Lie
group right actions ◁ : P × G → P and ◀ : P ′ × G′ → P ′, respectively. Let I be a set indexing an open cover
{Ui | i ∈ I} of M and principal bundle atlases {αi : π

−1[Ui] → G | i ∈ I} and {α′
i : π

′−1
[Ui] → G′ | i ∈ I} for

π : P → M and π′ : P ′ → M , respectively. Recall that by proposition 3.1, the two collections of bundle chart
transition maps {ρij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅} and {ρ′ij : Ui ∩ Uj → G′ | i, j ∈ I : Ui ∩ Uj ̸= ∅}
satisfy the cocycle conditions (3.2) and (3.3).

Define
×
ρij : Ui ∩ Uj → G×G′, p 7→

(
ρij(p), ρ

′
ij(p)

)
. (4.61)

It is straightforward to check that the collection {ρ×ij | i, j ∈ I : Ui ∩ Uj ̸= ∅} satisfies the cocycle conditions
as well, and, is smooth. Using the Principal bundle construction theorem, we can thus construct a principal
bundle Π: P ⊠ P ′ →M with structure group G×G′ in a canonical way.
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5 Associated bundles

Definition 5.1. Let π : E → M and π′ : E′ → M be fibre bundles with effective structure group actions
▷ : G× F → F and ▶ : G× F ′ → F ′, respectively.

Let I be such that {Ui | i ∈ I} is an open cover of M with the property that there exist a (G, ▷)-compatible
bundle atlas B =

{
αi : π

−1 [Ui] → F | i ∈ I
}

for π : E → M and a (G,▶)-compatible bundle atlas B′ =

{α′
i : π

′−1
[Ui] → F | i ∈ I} for π′ : E′ →M .

We say that π : E →M and π′ : E′ →M are associated if there exists a family of smooth maps {νi : Ui → G | i ∈ I}
that relates the G-valued transition functions {ρij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅} of B1 to the transition
functions

{
ρ′ij : Ui ∩ Uj → G | i, j ∈ I : Ui ∩ Uj ̸= ∅

}
of B2 through:

∀i, j ∈ I : ∀p ∈ Ui ∩ Uj : νi(p) • ρij(p) = ρ′ij(p) • νj(p). (5.1)

Remark 5.1. Recall that by an adequate choice of B and B′ for the associated bundles π : E → M and
π′ : E′ →M , the G-valued transition functions can always be made coincide. See remark 3.4.

Definition 5.2. Let π : E →M be a fibre bundle with effective structure group action ▷ : G× F → F and let
B be a (G, ▷)-compatible bundle atlas for π : E →M . Starting from the G-valued transition functions of B we
can build a unique principal bundle π̂ : P →M up to principal bundle isomorphism, by means of theorem 4.14.
Any principal bundle π̂ : P →M from this isomorphism class is said to be associated to π : E →M .

Definition 5.3. Let π : P →M be a principal bundle with respect to a Lie group right action ◁ : P ×G→ P .
Denote by B a principal bundle atlas for π : P → M . By lemma 4.1, B is in particular (G, •)-compatible.
Suppose we are given an effective Lie group left action ▷ : G× F → F .

Starting from the G-valued transition functions of B we can build a unique fibre bundle π̃ : E →M with effective
structure group action ▷ : G× F → F up to isomorphism of fibre bundles with effective structure group action
▷ : G × F → F , by means of theorem 3.3. Any fibre bundle π̃ : E → M with effective structure group action
▷ : G× F → F from this isomorphism class is said to be associated to π : P →M via ▷.

Example 5.1. Let π : P → M be a principal bundle with respect to a Lie group right action ◁ : P ×G → P
and suppose we are given an effective Lie group left action ▷ : G× F → F and a principal bundle atlas B.
We will now provide another concrete implementation of the fibre bundle with effective structure group action
▷ that is associated to π : P →M .

To this end, we first define an equivalence relation on the Cartesian product P × F according to

∀(a1, f1), (a2, f2) ∈ P × F :
[
(a1, f1) ∼ (a2, f2) :⇐⇒ ∃g ∈ G : (a2, f2) = (a1 ◁ g, g

−1 ▷ f1)
]
. (5.2)

Denote by P ▷F := (P ×F )/∼ the quotient set and by [a, f ] the equivalence class of an element (a, f) ∈ P ×F .
Define the projection

▷
π : P ▷ F →M, [a, f ] 7→ π(a), (5.3)

36



which is well-defined since π ◦ pr1 is constant on the equivalence classes. Define a bundle atlas

▷

B :=

{
▷
α :

▷
π
−1

[π[Dom(α)]] → F, [a, f ] 7→ α(a) ▷ f

∣∣∣∣α ∈ B
}
, (5.4)

which itself is well-defined due to the choice of the equivalence relation ∼ together with the fact that each
principal bundle chart α is idG-equivariant.

Using theorem 2.1, we can show that π▷ : P ▷F →M is a fibre bundle. The bundle atlas B▷ is manifestly (G, ▷)-
compatible and its G-valued transition functions match those of B. Therefore, π▷ : P ▷ F →M is associated to
π : P →M via ▷.

Remark 5.2. The concept of associated bundles formalizes the idea that physicists have in mind when then they
define, for instance, covariant vector fields, also known as 1-forms. Physicists like to stress that “a contravariant
vector field is an k-component entity whose components transform under a local linear transformation A ac-
cording to the formula w 7→

(
(A−1)m1wm, . . . , (A

−1)mkwm

)
”. That is, physicists think entirely in terms of the

transformation behaviour of components. What physicists don’t bother to point out is that they are implicitly
working with a chosen frame, or in more general terms, a chosen principal bundle chart, in relation to which
the components are to be understood.

Remark 5.3. The frame bundle π̂ : Fr(E) →M of a vector bundle π : E →M is the principal bundle associated
to π : E →M .

Remark 5.4. The Fibre bundle construction theorem and Principal bundle construction theorem enable us to
construct a wide variety of new principal bundles and associated bundles thereof. The next section will provide
us with some examples.
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6 Constructing more vector bundles

This section will treat about how to make rigorous definitions such as tensor fields.

Example 6.1. Let π : E →M be a vector bundle of rank k. Recall that its typical fibre is Rk which is acted
upon by the general linear group GL(k,R) by means of its defining representation

▷ : GL(k,R)× Rk → Rk, (A, v) 7→
(
A1

mv
m, . . . , Ak

mv
m
)
. (6.1)

Making use of the Fibre bundle construction theorem, we can simply define the dual bundle π∗ : E∗ →M as
the associated bundle via the Lie group left action

▶ : GL(k,R)× Rk → Rk, (A,w) 7→ (A1
mwm, . . . , Ak

mwm) , (6.2)

where An
m :=

(
A−1

)m
n
denotes the components of the inverse group element.

Alternatively, we can directly construct it using the low-level theorem 2.1. Having in mind remark 5.2, we
might regard this as an optional step. Yet, from the conceptual point of view, it may be worthwhile to explicitly
construct the bundle. We may want to utilize the collection of dual spaces of the fibres

E∗ := {Ep
∗ | p ∈M} (6.3)

as a total space for the dual bundle, together with the projection

π∗ : E∗ →M, ω 7→ p such that ω ∈ Ep
∗. (6.4)

Let α be a vector bundle chart of π : E →M and define for 1 ≤ i ≤ k the vector fields

ei : π[Dom(α)] → E, q 7→ (π, α)−1(q, êi), (6.5)

where (ê1, . . . , êk) is the standard basis of Rk. The collection (e1, . . . , ek) is a local frame and we can use it in
order to define a bundle chart

α∗ : π∗−1 [π[Dom(α)]] → Rk, ω 7→ (ω (e1(π
∗(ω))) , . . . , ω (ek(π

∗(ω)))) . (6.6)

The bundle atlas
B∗ := {α∗ | α ∈ B} (6.7)

satisfies the hypothesis of theorem 2.1 and in particular is composed of linear maps. So π∗ : E∗ →M is a vector
bundle.

Example 6.2. Let π1 : E1 → M and π2 : E2 → M be vector bundles of ranks k and l, respectively. And
denote by π̂1 : Fr(E1) → M and π̂2 : Fr(E2) → M their respective frame bundles. Define a left action of the
direct product GL(k,R)×GL(l,R) on Rk+l according to

▷ : (GL(k,R)×GL(l,R))× Rk+l → Rk+l,

((g, h), v) 7→
(
g1mv

m, . . . , gkmv
m, h1nv

k+n, . . . , hlnv
k+n

)
.

(6.8)

The direct sum bundle π⊕ : E1⊕E2 →M is the associated bundle to the product bundle of the frame bundles
by means of the Lie group left action ▷.
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Contrary to the case of the dual bundle, we can also construct the direct sum bundle in an easy and straight-
forward way. As total space we can use the embedded submanifold

E1 ⊕ E2 := (π1 × π2)
−1

[{(p, p) | p ∈M}] ⊆ E1 × E2. (6.9)

The projection
⊕
π : E1 ⊕ E2 →M, (a1, a2) 7→ π1(a1) (6.10)

then is manifestly smooth and a surjection. Given vector bundle charts α1 and α2 of π1 : E1 → M and
π2 : E2 →M , respectively, the map

α1 × α2 :
⊕
π
−1

[π1[Dom(α1)] ∩ π2[Dom(α2)]] → Rk+l (6.11)

is smooth and linear. This provides a vector bundles atlas

B1 ⊕ B2 := {α1 × α2 | α1 ∈ B1, α2 ∈ B2 : π1[Dom(α1)] ∩ π2[Dom(α2)] ̸= ∅} . (6.12)

By remark 2.1, this suffices to define a vector bundle.

Example 6.3. Let π : E → M and π′ : E′ → M be vector bundles of ranks k and l, respectively. Denote by
π̂ : Fr(E) →M and π̂′ : Fr(E′) →M their respective frame bundles. Denote by (e1, . . . , ek) the standard basis
of Rk and by (b1, . . . , bl) the standard basis of Rl. Define a left action of the direct product GL(k,R)×GL(l,R)
on Rk ⊗ Rl according to

▷ : (GL(k,R)×GL(l,R))×
(
Rk ⊗ Rl

)
→ Rk ⊗ Rl,

(
(g, h), vijei ⊗ bj

)
7→ gimh

j
nv

mnei ⊗ bj .
(6.13)

The tensor product bundle π⊗ : E ⊗ E′ → M is the associated bundle to the product bundle of the frame
bundles by means of the Lie group left action ▷.

Alternatively, we can explicitly define the total space as as set

E ⊗ E′ := {Ep ⊗ E′
p | p ∈M} (6.14)

with projection
⊗
π : E ⊗ E′ →M, a 7→ p such that a ∈ Ep ⊗ E′

p (6.15)

and bundle atlas

B ⊗ B′ :=
{
α⊗ α′ :

⊗
π
−1

[π [Dom(α)] ∩ π′ [Dom(α′)]] → Rk ⊗ Rl, a 7→
(
α|E⊗

π(a)

⊗ α′|E′
⊗
π(a)

)
(a)

∣∣∣α ∈ B, α′ ∈ B′ : π[Dom(α)] ∩ π′[Dom(α′)] ̸= ∅
}
.

(6.16)

Then, after some work, we can invoke theorem 2.1 in order to establish that π⊗ : E ⊗ E′ → M is a vector
bundle.

More commonly, we will construct tensor product bundles of vector bundles that are associated to the same
frame bundle.

Example 6.4. Let π : E → M be a vector bundle of rank k. Denote by π̂ : Fr(E) → M its frame bundle, by
(e1, . . . , ek) the standard basis of Rk and by (e1, . . . , ek) the dual basis of the standard basis.
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Define a left action of the direct product GL(k,R) on Rk⊗(r+s)
according to

▷ : GL(k,R)× Rk⊗(r+s) → Rk⊗(r+s)
,

(
A, vi1···ir j1···jsei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs

)

7→ Ai1
m1

· · ·Air
mr
Aj1

n1 · · ·Ajs
nsvm1···mr

n1···ns
ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs .

(6.17)

The (r, s)-tensor product bundle π(r,s) : E(r,s) → M of π : E → M is the associated bundle to the frame
bundle π̂ : Fr(E) →M by means of the Lie group left action ▷.

Alternatively we can construct the bundle directly starting form the set

E(r,s) :=
{
Ep

⊗r ⊗ Ep
∗⊗s | p ∈M

}
(6.18)

as total space with the projection

π(r,s) : E(r,s) →M, a 7→ p such that a ∈ Ep
⊗r ⊗ Ep

∗⊗s
. (6.19)

Suppose α ∈ B is a vector bundle chart of π : E →M . Then α∗ ∈ B∗ is the corresponding vector bundle chart
of the dual bundle π∗ : E∗ →M . We can construct the fibre-wise linear map

α⊗r ⊗ α∗⊗s : π(r,s)−1
[π[Dom(α)]] → Rk⊗(r+s)

, a 7→
(
α|⊗r

E
π(r,s)(a)

⊗ α∗|⊗s
E∗

π(r,s)(a)

)
(a) (6.20)

with the intention to use it as a vector bundle chart of the vector bundle to be constructed. Indeed, the collection

B(r,s) :=
{
α⊗r ⊗ α∗⊗s | α ∈ B

}
(6.21)

satisfies the hypothesis of theorem 2.1. This makes π(r,s) : E(r,s) →M a vector bundle.

Definition 6.1. A section T ∈ Γ(E(r,s)) of the (r, s)-tensor product bundle of π : E → M is called an (r, s)-
tensor field. Example 6.4 makes the idea of tensor fields rigorous and elucidates their transformation behaviour
in a direct way by establishing its relation to the frame bundle π̂ : Fr(E) →M of π : E →M .

Remark 6.1. Recall that exercise 3.1 verifies that set of tensor fields Γ(E(r,s)) of a vector bundle, together with
pointwise addition ⊕Γ(E(r,s)) and pointwise scalar multiplication ⊡Γ(E(r,s)) forms a unital module

(
Γ(E(r,s)), ⊕

Γ(E(r,s))
, ⊡
Γ(E(r,s))

)
(6.22)

over the unital commutative ring of the smooth functions (C∞(M),+C∞(M), ·C∞(M)) from exercise B.1..

Proposition 6.1. The unital module of tensor fields Γ(E(r,s)) with respect to pointwise addition ⊕Γ(E(r,s)

and pointwise scalar multiplication ⊡Γ(E(r,s)) from remark 6.1 is canonically isomorphic to the unital module

of C∞(M)-multilinear maps MultC∞(M)(Γ(E
∗)×r × Γ(E)×s, C∞(M)) with respect to the addition ⊕Mult and

scalar multiplication ⊡Mult from exercise B.3, i.e.,

(
Γ(E(r,s)), ⊕

Γ(E(r,s))
, ⊡
Γ(E(r,s))

)
∼=
(
MultC∞(M)(Γ(E

∗)×r × Γ(E)×s, C∞(M)), ⊕
Mult

, ⊡
Mult

)
, (6.23)

as unital modules over the unital commutative ring of the smooth functions (C∞(M),+C∞(M), ·C∞(M)) from
exercise B.1.
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Proof 6.1. First, construct a map

i : Γ(E(r,s)) → MultC∞(M)(Γ(E
∗)×r × Γ(E)×s, C∞(M)), (6.24)

where for every tensor field S ∈ Γ(E(r,s)) we have a map

i(S) : Γ(E∗)×r × Γ(E)×s → C∞(M) (6.25)

that is characterized by its action on a collection of sections Y1, . . . , Ys ∈ Γ(E) of π : E → M and sections
ω1, . . . , ωr ∈ Γ(E∗) of the dual bundle π∗ : E∗ →M :

i(S)(ω1, . . . , ωr, Y1, . . . , Ys) : M → R, p 7→ S(p) (ω1(p), . . . , ωr(p), Y1(p), . . . , Ys(p)) . (6.26)

Indeed, i(S)(ω1, . . . , ωr, Y1, . . . , Ys) ∈ C∞(M) is a smooth function. For, if α ∈ B is a vector bundle chart
of π : E → M (denote by α∗ ∈ B∗ the corresponding vector bundle chart of the dual bundle and by α⊗r ⊗
α∗⊗s ∈ B(r,s) the corresponding vector bundle chart of the (r, s)-tensor product bundle), then for every point
p ∈ π[Dom(α)] it holds that

S(p) (ω1(p), . . . , ωr(p), Y1(p), . . . , Ys(p))

=
(
α⊗s ⊗ α∗⊗r

)
(S(p)) (α∗(ω1(p)), . . . , α

∗(ωr(p)), α(Y1(p)), . . . , α(Ys(p))) .
(6.27)

However,
(
α⊗r ⊗ α∗⊗s

)
(S(p)) ∈ R(r+s)·k, α∗(ωm(p)) ∈ Rk and α(Yn(p)) ∈ Rk depend smoothly on p. This

proves that i(S)(ω1, . . . , ωr, Y1, . . . , Ys) ∈ C∞(M) is indeed a smooth function. Having verified this, it is clear
by construction that i(S) is a C∞(M)-multilinear map.

Second, define the map

j : MultC∞(M)(Γ(E
∗)×r × Γ(E)×s, C∞(M)) → Γ(E(r,s)), (6.28)

where for every C∞(M)-multilinear map L : Γ(E∗)×r × Γ(E)×s → C∞(M) we have the map

j(L) : M → E(r,s), (6.29)

that for every point p ∈M assigns the tensor j(L)(p) ∈ Ep
⊗r ⊗ · · · ⊗ Ep

∗⊗s

j(L)(p) : Ep
∗×r × Ep

×s → R, (ω1(p), . . . , ωr(p), Y1(p), . . . , Ys(p)) 7→ L(ω1, . . . , ωr, Y1, . . . , Ys)(p). (6.30)

Note that j(L)(p) is well-defined and depends only on p due to the C∞(M)-linearity of L.

Suppose now that we are given a vector bundle chart α ∈ B of π : E → M over U ∈ OM with corresponding
vector bundle chart α∗ ∈ B∗ of the dual bundle. Denote by b1, . . . , bk ∈ Γ(E|U ) the corresponding local frame
and by b1, . . . , bk ∈ Γ(E∗|U ) the its corresponding dual frame. Then:

(
αi1 ⊗ · · · ⊗ αir ⊗ α∗j1 ⊗ · · · ⊗ α∗js

)
(j(L)(p)) = L

(
bi1 , . . . , bir , bj1 , . . . , bjs

)
(p). (6.31)

But this agrees with the value of j(L)(p) with respect to the corresponding vector bundle chart α⊗r ⊗ α∗⊗s ∈
B(r,s) of the (r, s)-tensor product bundle, cf. equation (6.21). This proves that j(L) : M → E(r,s) is a smooth
map and thus a section of π(r,s) : (E(r,s)) →M .

It is left to proof that the two maps i and j are C∞(M)-linear and are mutual inverses. This is straightforward
to verify and is left as an exercise to the reader. This concludes the proof.
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Definition 6.2. For every pair of tensor product bundles E(m,n) and E(r,s) we can define an operator

⊗ : Γ(E(m,n))× Γ(E(r,s)) → Γ(E(m+r,n+s)) (6.32)

that assigns to each pair of tensor fields S ∈ Γ(E(m,n)) and T ∈ Γ(E(r,s)) another tensor field S ⊗ T ∈
Γ(E(m+r,n+s)), called the tensor product of S and T , given by the map

S ⊗ T : M → E(m+r,n+s), p 7→ S⊗
p
T, (6.33)

where ⊗p is the tensor product3 over the fibre Ep and its dual E∗
p .

Definition 6.3. For every tensor product bundle E(r,s) with r, s ≥ 1 and every pair (m,n) of natural numbers
satisfying 1 ≤ m ≤ r and 1 ≤ n ≤ s, we can define the operator

Cm
n : Γ(E(r,s)) → Γ(E(r−1,s−1)) (6.34)

that assigns to each tensor field S ∈ Γ(E(r,s)) another tensor field Cm
n (S) ∈ Γ(E(r−1,s−1)), called the (m,n)-

contraction of S, given by
Cm

n (S) : M → E(r−1,s−1), p 7→ Cp
m
n (Sp), (6.35)

where Cp
m
n : Ep

⊗r ⊗E∗
p
⊗s → Ep

⊗(r−1)⊗E∗
p
⊗(s−1) is the (m,n)-contraction3 over the fibre Ep and its dual E∗

p .

Remark 6.2. There are at least three different ways of constructing new vector bundles from given ones, two
of which are very abstract and, from the physics point of view, not always very insightful.

One of these two abstract methods is the one invoked multiple times throughout this section using the Fibre
bundle construction theorem, sometimes in combination with the Principal bundle construction theorem.

The second abstract method is sometimes referred to as “Metatheorem”. In loose terms it says that “everything
you can do with vector spaces can be done with vector bundles over the same base space M”. It relies on some
category theoretic considerations and will not be studied here.

The third method is the down-to-earth approach and uses theorem 2.1 without any fancy tricks. This is usually
the most insightful approach as it requires us to provide what grows to become a bundle atlas for the fibre
bundle. This process reveals all there is to be learnt about the newly constructed fibre bundle and is in general
an exercise worthy of our time.

3 Covered for instance in Differential Geometry and Lie Groups for Physicists by M. Fecko, Page 37, Chapter 2, Section 4
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7 Bundle metric

Definition 7.1. Let π : E → M be a vector bundle of rank k. A bundle metric on π : E → M is a global
(0, 2)-tensor field g ∈ Γ(E(0,2)) (a section of the (0, 2)-tensor product bundle π(0,2) : E(0,2) →M of π : E →M)
such that for every point p ∈M the tensor gp ∈ E∗

p ⊗ E∗
p is symmetric, i.e.,

∀X,Y ∈ Ep : gp(X,Y ) = gp(Y,X) (7.1)

and non-degenerate, i.e.,

∀X ∈ Ep : [∀Y ∈ Ep : gp(X,Y ) = 0 =⇒ X = 0] . (7.2)

Remark 7.1. On a vector bundle π : E →M there always exists a (Riemannian) bundle metric.4

Remark 7.2. Sylvester’s law of inertia [Syl52] states that for every point p ∈M , there exists a basis (e1, . . . , ek)
of Ep with corresponding dual basis (e1, . . . , ek) of Ep

∗ such that gp assumes the form

gp =

r∑

i=1

ei ⊗ ei −
r+s∑

i=r+1

ei ⊗ ei, (7.3)

for natural numbers r, s. Moreover, the natural numbers r and s do not depend on the particular choice of basis
(e1, . . . , ek). We say that gp has signature (r, s). Since gp is non-degenerate, it holds that r + s = k.

Observe that the signature of a bundle metric is locally constant, and consequently (proof left as an exercise to
the reader), constant on the connected components of M .

Definition 7.2. A bundle metric g ∈ Γ(E(0,2)) of signature (1, k − 1) is said to be Lorentzian.

Definition 7.3. Let g be a bundle metric of signature (r, k− r) on a vector bundle π : E →M . A local frame
(e1, . . . , ek) over U ∈ OM of π : E →M is said to be orthonormal if for every point p ∈ U it holds that

gp =

r∑

i=1

eip ⊗ eip −
k∑

i=r+1

eip ⊗ eip. (7.4)

Proposition 7.1. Let g be a bundle metric of signature (r, k−r) on a vector bundle π : E →M and let p ∈M .

Then there exists a local orthonormal frame e1, . . . , ek ∈ Γ(E|U ) over a neighbourhood U ∈ OM of p.

Proof 7.1. Suppose we are given an orthonormal basis (v1, . . . , vk) of Ep with corresponding dual basis (v1, . . . , vk)
of Ep

∗ satisfying

gp =

r∑

i=1

vi ⊗ vi −
r+s∑

i=r+1

vi ⊗ vi. (7.5)

4 Riemannian Geometry and Geometric Analysis (6th edition) by J. Jost, Theorem 2.1.4

43



Such a basis exists due to Sylvester’s law of inertia. For every 1 ≤ i ≤ k define the number ϵi = gp(vi, vi).
Using some vector bundle chart α ∈ B of π : E →M at p, we can define for every 1 ≤ i ≤ k the local section

bi : π[Dom(α)] → E, q 7→ (π, α)−1 (q, α(vi)) . (7.6)

Due to the fact that for every q ∈ π[Dom(α)] the map α|Eq
: Eq → Rk is a linear isomorphism, the tuple

b1, . . . , bk forms a local frame of π : E →M which agrees with v1, . . . , vk at p. By proposition 6.1 we know that
for every 1 ≤ i ≤ k it is true that g(bi, bi) : π[Dom(α)] → R is a smooth function on π[Dom(α)]. By continuity,
there exists a neighbourhood U1 ⊆ π[Dom(α)] of p on which it holds that

ϵ1g(b1, b1) > 0. (7.7)

We can then define the normalized local section on U1

e1 : U1 → E, q 7→ b1(q)√
ϵ1g(b1, b1)p

. (7.8)

Also on U1, the local section b2 − ϵ1g(e1, b2)e1 is defined. It agrees with v2 at p since gp(v1, v2) = 0. Then,
however, from gp(v2, v2) = ϵ2 it follows that there exists a neighbourhood U2 ⊆ U1 of p such that

ϵ2 g (b2 − g (e1, b2) e1, b2 − g (e1, b2) e1) > 0. (7.9)

This enables us to define the normalized local section on U2 given by

e2 : U2 → E, q 7→
b2(q)− ϵ1 g (e1, b2)q e1(q)√

ϵ2 g (b2 − ϵ1 g (e1, b2) e1, b2 − ϵ1 g (e1, b2) e1)q

. (7.10)

In this manner, we can continue and define for 1 ≤ n ≤ k, the local section

en : Un → E, q 7→
bn(q)−

n∑
m=1

ϵm g (em, bn)q em(q)

√
ϵn g

(
bn −

n∑
m=1

ϵm g (em, bn) em, bn −
n∑

m=1
ϵm g (em, bn) em

)

q

. (7.11)

In this way we obtain a finite sequence of neighbourhoods Uk ⊆ Uk−1 ⊆ · · · ⊆ U2 ⊆ U1 of p. It is quickly
checked that, by construction, e1|Uk

, . . . , ek|Uk
is a local orthonormal frame.5

Corollary 7.2. Let π : E →M be a vector bundle of rank k with bundle metric g of signature (r, k − r).

Due to proposition 7.1 we can reduce the structure group of the frame bundle π̂ : Fr(E) → M to the pseudo-
orthogonal group O(r, k − r). The principal bundle obtained in such a way is called the orthogonal frame
bundle π̂ : Frg(E) →M of π : E →M with respect to g.

Remark 7.3. As we shall see, the orthogonal frame bundle π̂ : Frg(E) →M might fail to be trivial even if the
frame bundle π̂ : Fr(E) →M is trivial.

Definition 7.4. Let π : E →M be a vector bundle of rank k with a Lorentzian bundle metric g.

We say that π : E → M is time-orientable with respect to g if there exists a global section X : M → E such
that g(Xp, Xp) > 0 for all points p ∈M .

We will now provide an example of a three-dimensional time-orientable parallelizable spacetime with Lorentzian
metric which does not admit a global orthonormal frame.

5 Following largely the exposition found in Finding local orthonormal frame on a Pseudo-Riemannian Manifold by K. Lois on
http://math.stackexchange.com
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Example 7.1. We will depart from the three-dimensional smooth manifold R3. Note that R3 is parallelizable.
Any open set of R3, and in particular R3 \ {0}, is therefore parallelizable as well.

We pick R3 \ {0} as the underlying smooth manifold for our spacetime. Using spherical coordinates (x1 =
r, x2 = θ, x3 = ϕ), we equip R3 \ {0} with the following Lorentzian metric:

g =
1

r2
dr ⊗ dr −

(
dθ ⊗ dθ + sin2(θ) dϕ⊗ dϕ

)
(7.12)

Note that we can cover R3 \ {0} using spherical coordinates corresponding to different northpole-southpole-axis
and that the provided metric g is given by the above formula consistently throughout the different spherical
coordinate charts. Also note that ∂

∂r coincides for all the possible different choices of spherical coordinates.

We observe that this spacetime is time-orientable, for we can provide a global time-like vector field given by ∂
∂r :

g

(
∂

∂r
,
∂

∂r

)
=

1

r2
> 0. (7.13)

The question that we would like to ask is whether there exists a global orthonormal frame for the metric g,
remembering that (R3 \ {0}, g) is both parallelizable and time-orientable?

The answer is: No!

This is ultimately due to the possibility that the quotient bundle of two trivial vector bundles might be
non-trivial. In our particular case, consider the orthogonal complement bundle of the line-bundle

{
R ∂

∂r

}

in the tangent bundle T
(
R3 \ {0}

)
with respect to the metric g.

Now consider the unit-sphere S2 as a subset of R3 \ {0}. For any event p ∈ S2, the orthogonal complement
of ∂

∂r wrt. g coincides precisely with the tangent space of S2 at p. Hence the restriction of the orthogonal
complement bundle to the subset S2 is isomorphic to the tangent bundle of S2.

However, it is well-known that S2 is not parallelizable. There does not exist a global frame on S2. Since there
exists a vector bundle isomorphism between the tangent bundle TS2 and the restriction to S2 of the orthogonal
complement bundle of the line-bundle

{
R ∂

∂r

}
in the tangent bundle T

(
R3 \ {0}

)
, we conclude that there cannot

exist a global section of the orthogonal complement bundle. In turn, there does not exist a global orthonormal
frame for (R3 \ {0}, g).
In this argument we cheated a little by choosing the line-bundle {R ∂

∂r} from the start. It is left as an exercise
to the reader to go through all the details of the construction for the case of an arbitrary global time-like vector
field.

Refer to figure 7.1 for a visualization of the idea.

Subproof (g solves the Einstein equations). The question that remains is whether the provided metric g solves
the Einstein equations.

Once more, we will make use of spherical coordinates (x1 = r, x2 = θ, x3 = ϕ). The calculations, however,
will be carried out using the local orthonormal frame given by:

hr = r
∂

∂r
, hθ =

∂

∂θ
, hϕ =

1

sin(θ)

∂

∂ϕ
. (7.14)

We will first calculate the coefficients of anholonomy according to the formula:

[ha, hb] = Ξ(h)
c
ab
hc. (7.15)

We obtain:

[hr, hθ] = 0, [hr, hϕ] = 0, [hθ, hϕ] = − cot(θ)hϕ. (7.16)
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The only non-vanishing pair of coefficients of anholonomy is given by

Ξ(h)
ϕ
θϕ

= −Ξ(h)
ϕ
ϕθ

= − cot(θ). (7.17)

We can then calculate the coefficient functions of the Levi-Civita covariant derivative operator with respect
to this local orthonormal frame according to the formula (use (10.27))

◦
Γ (h)

a
bc

=
1

2

(
Ξ(h)b

a

c
+ Ξ(h)c

a

b
− Ξ(h)

c
ab

)
. (7.18)

The only non-vanishing coefficients are given by:

−
◦
Γ (h)

θ
ϕϕ

=
◦
Γ (h)

ϕ
θϕ

= cot(θ). (7.19)

The components of the Ricci-tensor can be calculated according to (use (10.24)):

◦
R (h)ab

= hc

(◦
Γ (h)

c
ab

)
− hb

(◦
Γ (h)

c
ac

)
+

◦
Γ (h)

c
dc

◦
Γ (h)

d
ab

−
◦
Γ (h)

c
db

◦
Γ (h)

d
ac

− Ξ(h)
d
cb

◦
Γ (h)

c
ad
. (7.20)

The only non-vanishing components of the Ricci-tensor turn out to be

◦
R (h)θθ

= 1,
◦
R (h)ϕϕ

= 1. (7.21)

The Ricci-scalar is then found to be equal to

◦
R = ηab

◦
R (h)ab

= −2. (7.22)

Finally, the Einstein-tensor can computed according to

◦
G (h)ab

=
◦
R (h)ab

− R

2
g(h)ab. (7.23)

Its only non-zero component is found to be
◦
G (h)rr

= 1. (7.24)

An observer at a point p ∈ R3 \ {0} and with orthonormal frame (hr, hθ, hϕ) thus will measure an energy
density equal to 1 but vanishing linear momentum densities and a vanishing flux of linear momentum. The
matter configuration that gives rise to the spacetime in question is consequently given by non-interacting
matter at rest with these observers. Note that the total matter content of this universe does not change in
time. The matter is needed in order to balance the curvature of the space, resulting in a static spacetime.

Note that hr is a no-where vanishing time-like Killing vector field, i.e.

∀a, b ∈ {r, θ, ϕ} : (∇ahr)b + (∇bhr)a = 0. (7.25)

Remark 7.4. The counterexample from example 7.1 does not generalize to the four-dimensional case. This is
due to the fact that S3 is parallelizable, being the underlying manifold of the Lie group SU(2).

A prominent counterexample in four dimensions is provided by the extended Schwarzschild spacetime (regions
I (exterior) and II (interior)) or alternatively even the maximally extended Schwarzschild spacetime (regions I,
II, III and IV). The topology of both solutions is given by S2×R2. As such, their spacetimes are parallelizable.
Given the Schwarzschild metric in Kruskal coordinates, we observe that it is time-orientable. There, however,
does not exist a global orthonormal frame. As we will discuss later, this has considerable consequences: Neither
a spin structure nor a curvature-free metric-compatible covariant derivative operator can exist on the extended
Schwarzschild spacetime.
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Figure 7.1: R3 \{0} with metric g = 1
r2 dr⊗dr− (dθ⊗dθ+sin2(θ) dϕ⊗dϕ) is

a time-orientable parallelizable three-dimensional spacetime without a global
orthonormal frame. See example 7.1.

47



8 Covariant derivatives and parallel transport

Definition 8.1. Let π : E →M be a vector bundle.

A covariant derivative operator on π : E →M is a map

∇ : Γ(TM)× Γ(E) → Γ(E), (X, s) 7→ ∇X(s) (8.1)

that assigns to every pair of a vector field X ∈ Γ(TM) on the base space and a section s ∈ Γ(E) another section
∇Xs ∈ Γ(E) in such a way that for every smooth function φ ∈ C∞(M), every two vector fields X,X ′ ∈ Γ(TM)
and every two sections s, s′ ∈ Γ(E) the following conditions are met:

1. Additivity with respect to the addition on Γ(TM):

∇X +
Γ(TM)

X′(s) = ∇X(s) +
Γ(E)

∇X′(s). (8.2)

2. C∞(M)-homogeneity with respect to the C∞(M)-multiplication on Γ(TM):

∇φ ·
C∞(M)

X(s) = φ ·
C∞(M)

∇X(s). (8.3)

3. Additivity with respect to the addition on Γ(E):

∇X

(
s +
Γ(E)

s′
)

= ∇X(s) +
Γ(E)

∇X(s′). (8.4)

4. Leibniz rule with respect to the C∞(M)-multiplication on Γ(E):

∇X

(
φ ·

Γ(E)
s

)
= X(φ) ·

C∞(M)
s +
Γ(E)

φ ·
C∞(M)

∇X(s). (8.5)

Note that due to item 2, ∇ is a point-operator with respect to its first argument, thus making it possible to
define for any point p ∈M the map

∇p : TpM × Γ(E) → Ep, (v, s) 7→ (∇Xs)(p) where X ∈ Γ(TM) such that v = Xp. (8.6)

We commonly overload notation and use the same symbol ∇ when referring to ∇p, it is usually clear from
context which map is meant.

Proposition 8.1. Let π : E → M be a vector bundle. Given two covariant derivative operators ∇ and ∇∇ on
π : E →M it holds that

∇Xs−∇∇Xs = K(X, s), (8.7)

where K ∈ Γ(TM∗ ⊗ E(1,1)) is a tensor field, a section of the tensor product bundle TM∗ ⊗ E(1,1) of the dual
bundle of the tangent bundle πTM : TM →M and the (1, 1)-tensor product bundle over π : E →M .
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Proof 8.1. All we have to do is prove that K(X, s) is C∞(M)-linear in the arguments X ∈ Γ(TM) and s ∈ Γ(E).

Indeed, for any two sections X1, X2 ∈ Γ(TM) of the tangent bundle πTM : TM → M , any sections two
s1, s2 ∈ Γ(E) of π : E →M and any smooth function φ ∈ C∞(M), we have

K(X1 +X2, s) = ∇X1+X2s−∇∇X1+X2s, (8.8)

= (∇X1s+∇X2s)− (∇∇X1s+∇∇X2s) , (8.9)

= K(X1, s) +K(X2, s), (8.10)

K(X, s1 + s2) = ∇X (s1 + s2)−∇∇X (s1 + s2) , (8.11)

= (∇Xs1 +∇Xs2)− (∇∇Xs1 +∇∇Xs2) , (8.12)

= K(X, s1) +K(X, s2), (8.13)

K(φ ·X, s) = ∇φ·Xs−∇∇φ·Xs, (8.14)

= φ · ∇Xs− φ · ∇∇Xs, (8.15)

= φ ·K(X, s), (8.16)

K(X,φ · s) = ∇X (φ · s)−∇∇X (φ · s) , (8.17)

= X(φ) · s+ φ · ∇Xs−X(φ) · s− φ · ∇Xs, (8.18)

= φ ·K(X, s). (8.19)

Remark 8.1. An immediate consequence is that the collection of covariant derivative operators on π : E →M
forms an affine space over the unital C∞(M)-module of tensor fields Γ(TM∗ ⊗ E(1,1)), once we allow affine
spaces be modelled on unital modules over commutative unital rings.

It is due to this fact that covariant derivative operators are also historically referred to as affine connections.

Definition 8.2. Let π : E → M be a vector bundle over M of rank k that is equipped with a covariant
derivative operator ∇.

Given an open subset U ∈ OM of M , a local frame e1, . . . , eDim(M) ∈ Γ(TU) for TM over U and a local frame
b1, . . . , bk ∈ Γ(E|U ) for E over U we define the coefficient functions of the covariant derivative operator
∇ with respect to the local frame e1, . . . , ek for TM over U and the local frame b1, . . . , bk for E over
U by

Γ(e,b)
m

nj
= bm

(
∇ej bn

)
, (8.20)

where b1, . . . , bk ∈ Γ(E∗|U ) denotes the coframe of b1, . . . , bk.

Exercise 8.1. For every vector field X ∈ Γ(TM) and every section s ∈ Γ(E) it holds on U that

∇Xs =
(
X(sm(b)) + Γ(e,b)

m
nj
Xj

(e)s
n
(b)

)
bm. (8.21)

Exercise 8.2.

Let p ∈ M and let U ∈ OM be a neighbourhood of p together with a local frame b1, . . . , bk of π : E → M over
U and a local frame e1, . . . , eDim(M) of πTM : TM →M over U .

Let V ∈ OM be another neighbourhood of p together with another local frame b̃1, . . . , b̃k of π : E → M over
V and another local frame ẽ1, . . . , ẽDim(M) of πTM : TM → M over V . Denote by B : U ∩ V → GL(k,R)
and E : U ∩ V → GL(Dim(M),R) the smooth maps such that b̃1 = Bm

1 bm, . . . , b̃k = Bm
k bm and ẽ1 =

Em
1 em, . . . , ẽDim(M) = Em

Dim(M) em on U ∩ V .
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Show that the coefficient functions of the covariant derivative operator ∇ with respect to (e, b) and (ẽ, b̃),
respectively, satisfy the relation

Γ(ẽ,b̃)
m

ni
= Bk

mEj
i

(
Bl

n Γ(e,b)
k
lj
+ ej

(
Bk

n

))
, (8.22)

where Bk
m = (B−1)mk denotes the inverse of B.

Proposition 8.2. Let ∇ be a covariant derivative operator on a vector bundle π : E →M of rank k.

Given a smooth map f : N → M , the covariant derivative operator ∇ on π : E → M canonically induces a
covariant derivative operator ∇f on the pullback bundle f∗E.

Proof 8.2. Recall the equivalence of sections along f and sections of the pullback bundle. In order to avoid
heavy notation, we will work with sections along f throughout this proof.

For any section s′ : M → E and every vector Xp ∈ TN at a point p ∈ N , we require

∇f
Xp

(s′ ◦ f) := ∇f∗Xps
′. (8.23)

We then extend the definition to any section s : N → E along f . To this end, suppose p ∈ N and let U ∈ OM

be a neighbourhood of f(p) together with a local frame b1, . . . , bk of π : E → M over U and a local frame
e1, . . . , eDim(M) of πTM : TM →M over U . Then, we extend using the Leibniz rule

∇f
Xp
s =∇f

Xp
(sm(bm ◦ f)),

:=Xp(s
m) + sm(p)∇f

Xp
(bm ◦ f),

=Xp(s
m) + sm(p)∇f∗Xp

bm.

(8.24)

If we can show that ∇f can be expressed consistently using coefficient functions, satisfying the corresponding
translation formula, then the items 1 to 4 from definition 8.1 are readily verified.

To this end, let p ∈ N and W ∈ ON be a neighbourhood of p such that f [W ] ⊆ U together with a local frame
a1, . . . , aDim(N) of πTN : TN → N over W . Then, a short calculation yields

∇f
ai,p

(bn ◦ f) = (f∗,pai,p)
l
(
Γ(e,b)

m
nl

◦ f
)
(p) bn(f(p)). (8.25)

So the coefficient functions of ∇f satisfy

Γf
(a,b◦f)

m

ni
= (f∗ ◦ ai)l

(
Γ(e,b)

m
nl

◦ f
)
, (8.26)

and consequently, are smooth.

Now suppose that we are given other neighbourhoods W̃ ∈ ON of p and Ũ ∈ OM of f(p) satisfying f [W̃ ] ⊆ Ũ
together with a local frame b̃1, . . . , b̃k of π : E →M on Ũ and another local frame ã1, . . . , ãDim(N) of πTN : TN →
N on W̃ . There exist smooth maps B : U ∩ Ũ → GL(k,R) and A : W ∩ W̃ → GL(Dim(N),R) such that
b̃1 = Bm

1 bm, . . . , b̃k = Bm
k bm and ã1 = Am

1 am, . . . , ãDim(N) = Am
Dim(N) am on W ∩ W̃ . The coefficient

functions satisfy:

Γf

(ã,b̃◦f)
m

ni
= (f∗ ◦ ãi)l

(
Γ(e,b̃)

m

nl
◦ f
)
,

=
(
f∗ ◦ (Aj

iaj)
)l
(Br

m ◦ f)
(
(Bs

n ◦ f)
(
Γ(e,b)

r
sl
◦ f
)
+ (el (B

r
n) ◦ f)

)
,

= (f∗ ◦ aj)lAj
i (Br

m ◦ f)
(
(Bs

n ◦ f)
(
Γ(e,b)

r
sl
◦ f
)
+ (el (B

r
n) ◦ f)

)
,

= Aj
i(Br

m ◦ f)
(
(Bs

n ◦ f) Γf
(a,b◦f)

r

sj
+ (f∗ ◦ ai) (Br

n)
)
,

= Aj
i(Br

m ◦ f)
(
(Bs

n ◦ f) Γf
(a,b◦f)

r

sj
+ ai (B

r
n ◦ f)

)
.

(8.27)

This is the expected transformation formula. This concludes the proof.

50



Definition 8.3. Let p, q ∈M be points in M .

A path γ : [0, 1] →M is said to be piecewise smooth if there exist finitely many numbers t0 = 0 < t1 < · · · <
tn = 1 such that for each 1 ≤ i ≤ n the restriction γ[ti−1,ti] : [ti−1, ti] →M is smooth.

Definition 8.4. Let γ1 : [0, 1] → M and γ2 : [0, 1] → M be two piecewise smooth paths in a smooth manifold
(M,OM ,AM ) such that γ1(1) = γ2(0) and ξ ∈ (0, 1).

The ξ-concatenation of γ1 with γ2 is the piecewise smooth path

γ1 ξ∗ γ2 : [0, 1] →M, t 7→




γ1

(
t
ξ

)
for t ≤ ξ

γ2

(
t−ξ
1−ξ

)
for t > ξ

. (8.28)

The 1
2 -concatenation of γ1 with γ2 will usually be abbreviated using the short-hand notation γ1 ∗ γ2.

Definition 8.5. Let γ : [0, 1] →M be a piecewise smooth path in a smooth manifold (M,OM ,AM ).

The path inversion of γ is the piecewise smooth path

γ : [0, 1] →M, t 7→ γ(1− t). (8.29)

Definition 8.6. A smooth path γ : [0, 1] → M is said to be regular if for every t ∈ [0, 1] its velocity γ̇(t) is
different from zero, i.e., if γ̇(0) ̸= 0.

Definition 8.7. Let π : E →M be a vector bundle over M of rank k.

A parallel transport system P on π : E →M is a map

P : {(γ, a) ∈ C∞([0, 1],M)× E | γ(0) = π(a)} → E, (γ, a) 7→ Pγ(a) (8.30)

that assigns to every smooth path γ : [0, 1] → M and every vector a ∈ Eγ(0) in the fibre over γ(0) a vector
Pγ(a) ∈ Eγ(1) in the fibre over γ(1) such that:

1. For every smooth path γ : [0, 1] →M the map Pγ : Eγ(0) → Eγ(1) is a linear isomorphism. (See fig. 8.1.)

2. For every smooth path γ : [0, 1] →M the parallel transport Pγ along its path inversion coincides with P−1
γ .

3. For every two smooth paths γ1, γ2 satisfying γ1(1) = γ2(0), the parallel transport Pγ1
ξ∗γ2

along the ξ-
concatenation γ1 ξ∗ γ2 coincides with Pγ2

◦ Pγ1
.

4. For every smooth path γ : [0, 1] → M and every reparametrization φ : Diff([0, 1]) satisfying φ(0) = 0 and
φ(1) = 1, the parallel transport Pγ◦φ along the reparametrized path γ ◦ φ coincides with Pγ .

5. For every open set U ∈ OM and every smooth map Ψ: TU → U satisfying Ψ(0TpM ) = p for all p ∈ U , the
map

TU ⊕ E|U → E, (X, a) 7→ Pt7→Ψ(tX)(a) (8.31)

is smooth.

6. For every smooth path γ : [0, 1] →M , the map

Pγ,a : [0, 1] → E, t 7→ Ps7→γ(st)(a) (8.32)

is smooth.

7. For every two smooth paths γ1, γ2 leaving the point γ1(0) = γ2(0) with the same velocity γ̇1(0) = γ̇2(0),
the parallel transports along γ1 and γ2 satisfy for every a ∈ Eγ1(0) the relation

Ṗγ1,a(0) = Ṗγ2,a(0). (8.33)
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Remark 8.2. As we will see shortly, a weaker version - only valid for regular or constant paths - of item 6 from
definition 8.7 already follows from item 5. This is the extent of proposition 8.5 below. The reason we do require
item 6 is that we would like to avoid having to exclude smooth paths that are neither regular nor constant every
time we talk about parallel transport systems.

In fact, we could omit item 6 due to the fact that the proofs of equivalence between covariant derivative operators
and parallel transport systems - theorems 8.8 and 8.9 - do not rely on item 6. Item 6 would then follow from the
proof of theorem 8.8. In order not to obscure the true nature of what a parallel transport system encompasses,
we choose to include item 6 explicitly.

Lemma 8.3. Suppose γ : [0, 1] →M, t 7→ p for p ∈M is a constant path.

Then the parallel transport along γ is trivial, i.e,

Pγ = idEp
. (8.34)

Proof 8.3. First, observe that the path concatenation γ ∗ γ coincides with γ. As a consequence, item 3 from
definition 8.7 infers that

Pγ = Pγ∗γ = Pγ ◦ Pγ . (8.35)

However, since γ coincides with its path inversion γ, item 2 from definition 8.7 states that

Pγ = Pγ = P−1
γ . (8.36)

Substituted in the right hand side of equation (8.35), we obtain

Pγ = idEp
, (8.37)

as claimed.

Lemma 8.4. Let (M,OM ,AM ) be a smooth manifold, p ∈ M a point and x ∈ AM a chart with the property
that x[Dom(x)] = RDim(M). Note that this can always be achieved. (We can start by removing the offset of x at
p in order to achieve x(p) = 0. Next, we can restrict the codomain x[Dom(x)] to a star-shaped open set, which
happens to be diffeomorphic to RDim(M).)

The map
Ψ(x) : TDom(x) → Dom(x), X 7→ x−1 (x(πTM (X)) + x∗(X)) (8.38)

is smooth and satisfies Ψ(x)(0TqM ) = q for all q ∈ Dom(x).

Moreover, for every X ∈ T Domx the smooth path

γ
(x)
X : [0, 1] → Dom(x), t 7→ Ψ(x)(tX) (8.39)

satisfies γ̇
(x)
X (0) = X.

Proof 8.4. First of all, Ψ(x) is smooth since x∗ : T Dom(x) → RDim(M) is a vector bundle chart for the tangent
bundle πTM : TM →M and x : Dom(x) → x[Dom(x)] is a diffeomorphism.

For the first part it suffices to plug in x∗(0TqM ) = 0, in order to obtain

Ψ(x)(q) = x−1(x(πTM (0TqM ))) = q. (8.40)

For the second part, observe that, by definition of Ψ(x), it holds that
(
x ◦ γ(x)X

)
(t) = x(πTM (X)) + x∗(tX) = x(πTM (X)) + t · x∗(X). (8.41)

But then, the velocity γ̇
(x)
X (0) satisfies

x∗
(
γ̇
(x)
X (0)

)
=
(
x ◦ γ(x)X

)′
(0) = x∗(X). (8.42)

Finally, since γ
(x)
X (0) = πTM (X), it follows that γ̇

(x)
X (0) = X.
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p1

p2
γ1 γ2

Ep0

Ep1

Ep2

Pγ1

Pγ1

Pγ2

Pγ2

Pγ2∗γ1

Pγ1∗γ2

Figure 8.1: Illustriation of the meaning of items 1 to 3 from the definition of a parallel transport system.

Proposition 8.5. From item 5 from definition 8.7 it follows that for every regular or constant path γ : [0, 1] →
M and every point a ∈ Eγ(0), the path

Pγ,a : [0, 1] → E, t 7→ Ps 7→γ(ts)(a) (8.43)

is smooth.

Proof 8.5. Let t ∈ [0, 1]. In order to prove that Pγ,a : [0, 1] → E is a smooth path in E for every a ∈ Eγ(0),
we have to distinguish between the parallel transport along a regular path and the parallel transport along a
constant path.

Subproof (Case 1: γ : [0, 1] → M is regular). Recall that for every point t in the [0, 1] the velocity γ̇(t) is
different from zero. In fact, there exists ϵ > 0 such that there exists an extension γ|(−ϵ,1+ϵ) : (−ϵ, 1+ ϵ) →M
is an immersion. It might, however, fail to be an injection.

Let us show that for any t ∈ [0, 1], the curve Pγ,a is smooth at t. There exists ϵ > 0 such that γ|(t−ϵ,t+ϵ)

is an injective immersion, and as such qualifies as an embedding. It is well-known6 that we can find a slice
chart for γ|(t−ϵ,t+ϵ) at γ(t): a chart x ∈ AM at γ(t) such that x2(γ(s)) = · · · = xDim(M)(γ(s)) = 0 for all
s ∈ (t− δ, t+ δ), where ϵ > δ > 0. We may adapt x such that it satisfies the hypothesis of lemma 8.4 in order
to use the map Ψ(x) : T Dom(x) → Dom(x). Observe that for every r ∈ (−ϵ, ϵ) it holds that

Ψ(x)(rγ̇(t)) = γ(t+ r). (8.44)

Then, however, for every b ∈ Eγ(t) the map

(−ϵ, ϵ) → E, r 7→ Ps 7→Ψ(x)(srγ̇(t))(b) (8.45)

6 Introduction to Smooth Manifolds (2nd edition) by J. M. Lee, Page 101, Theorem 5.8 (Local Slice Criterion for Embedded
Submanifolds)
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smoothly depends on r. This is an interesting result due to the fact that the path s 7→ Ψ(x)(srγ̇(t)) coincides
with the path

γt+r : [0, 1] →M, s 7→ γ(t+ sr). (8.46)

Let us also introduce the definition of the path

γt : [0, 1] →M, s 7→ γ(st). (8.47)

The t
t+r -concatenation of γt with γ

T
+r is equal to the path γt+r. The parallel transport P

γt
t

t+r∗ γt
+r

along the

t
t+r -path concatenation γt

t
t+r∗ γt+r coincides with Pγt

+r
◦ Pγt

due to item 3 of definition 8.7. In short, we have

that Pγt
+r

◦ Pγt is equal to Pγt+r . This finally proves that in the vicinity (t− ϵ, t+ ϵ) of t, the map

Pγ,a : [0, 1] → E, τ 7→ Pγτ
(a) (8.48)

is smooth for any a ∈ Eγ(0).

Subproof (Case 2: γ : [0, 1] →M is smooth). Let r ∈ [t− ϵ, t+ ϵ]. The path γt+r : [0, 1] →M, s 7→ γ(t+ sr) is
constant. By lemma 8.3, the parallel transport along γt+r is trivial, i.e.,

Pγt
+r

= idEγ(t)
. (8.49)

It is immediate that for every b ∈ Eγ(t) the constant map

(−ϵ, ϵ) → E r 7→ Pγt
+r
(b) (8.50)

is smooth. In just the same way as done for case 1 we can establish that Pγt
+r
(Pγt(a)) coincides with Pγt+r (a)

for any a ∈ Eγ(0). This proves that in the vicinity [t− ϵ, t+ ϵ] of t, the map

Pγ,a : [0, 1] → E, τ 7→ Pγτ
(a) (8.51)

is smooth. This concludes the proof.

Lemma 8.6. Let p ∈M and a ∈ Ep. The map

La : TpM → TaE, X 7→ PγX ,ȧ(0), where γX : R →M such that X = γ̇X(0), (8.52)

is a linear injection.

Proof 8.6. The map La : TpM → TaE is well-defined due to item 7 from definition 8.7. In order to show that
La is linear, we will make use of lemma 8.4. Suppose x ∈ AM is a map at p such that x[Dom(x)] = RDim(M)

and consider the map Ψ(x) : T Dom(x) → Dom(x) from lemma 8.4 that satisfies the hypothesis of item 5 from
definition 8.7. For every X ∈ TpM , define the smooth path (see lemma 8.4)

γ
(x)
X : [0, 1] →M, t 7→ Ψ(x)(tX). (8.53)

We can define the auxiliary map

Ca : TpM → E, X 7→ Ps 7→Ψ(x)(sX)(a). (8.54)

It is smooth by item 5 from definition 8.7. In terms of Ca, we can express La in the following fashion:

La(X) = P
γ
(x)
X ,ȧ

(0),

=
d

dt

∣∣∣∣
t=0

(
Ps 7→Ψ(x)(stX)(a)

)
,

= Ca∗,0TpM

(
J0TpM

(X)
)
.

(8.55)

However, Ca∗,0TpM
: T0TpM

(TpM) → TaE and the canonical isomorphism J0TpM
: TpM → T0TpM

(TpM) are
linear maps, proving that La : TpM → TaE is linear.
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Moreover, La : TpM → TaE is injective. For, ifX ∈ TpM , then π◦PγX ,a = γX and, consequently, (π∗◦La)(X) =
X. This proves that π∗ ◦ La = idTpM and that La : TpM → TaE is injective.

Lemma 8.7. Let π : E → M be a vector bundle of rank k. Given a point p ∈ M , a vector bundle chart
α : Dom(α) → Rk at p, and points a, Y ∈ Ep in the fibre over p, it holds that

dα (Ja(Y )) = α(Y ), (8.56)

where Ja : Ep → Ta (Ep) is the canonical isomorphism.

Proof 8.7. Recall the curve

γaY : R → Ep, t 7→ a +
Ep

t ·
Ep

Y (8.57)

in Ep. It gives rise to the curve

α ◦ γaY : R → Rk, t 7→ α(a) + t · α(Y ) (8.58)

in Rk. Here we used that α|Ep
: Ep → Rk is linear. Then, it follows that for every 1 ≤ i ≤ k it holds that

dαi (Ja(Y )) =
(
αi ◦ γaY

)′
(0) = αi(Y ). (8.59)

Definition 8.8. A section Y ∈ Γγ(E) along a curve γ : (τ1, τ2) → M is said to be parallelly transported
along γ if for every t1, t2 ∈ (τ1, τ2) it holds that

Y (t2) = Ps 7→γ(t1+s(t2−t1))(Y (t1)). (8.60)

Theorem 8.8. Let π : E →M be a vector bundle of rank k equipped with a covariant derivative operator ∇.

We can canonically construct a parallel transport system P on π : E → M such that a section Y along a curve
γ : (t1, t2) →M is parallelly transported along γ if and only if ∇γ

∂id
Y = 0Γγ(E).

Proof 8.8. For every smooth path γ : [0, 1] →M and every element a ∈ Eγ(0) in the fibre over the starting point
γ(0) denote by Pγ,a : [0, 1] → E the unique section along γ with Pγ,a(0) = a such that ∇γ

∂id
Pγ,a = 0.

For every t ∈ [0, 1] there exists a neighbourhood U of γ(t) together with a local frame b1, . . . , bk of E and a local
frame e1, . . . , ek of TM . There also exists ϵ > 0 such that γ[(t − ϵ, t + ϵ)] ⊆ U . Using the vector bundle chart
α ∈ B associated to the local frame b1, . . . , bk, we can express the equation ∇γ

∂id
Pγ,a = 0 on s ∈ (t− ϵ, t+ ϵ) as

(αm ◦ Pγ,a)
′
(s) + Γγ

(∂id,b◦γ)
m

n
(s) · (αn ◦ Pγ,a) (s) = 0, (8.61)

where we made use of the coefficient functions (which are smooth!) of the covariant derivative operator ∇γ along
γ and the identity chart id of R. The above equation is a linear homogeneous first-order differential equation with
variable coefficients. It is well-known7 that there exists a unique (smooth) solution α ◦Pγ,a : (t− ϵ, t+ ϵ) → Rk.
Moreover, the solutions of equation (8.61) form a subspace of C∞((t − ϵ, t + ϵ),Rk). Since the closed interval
[0, 1] is compact, we can cover the interval [0, 1] by a finite number of such intervals (t− ϵ, t+ ϵ). Gluing them
together appropriately leads us to conclude that there exists a unique section Pγ,a along γ such that Pγ,a(0) = a
and ∇γ

∂id
Pγ,a = 0.

Having established this, we define:

P : {(γ, a) ∈ C∞([0, 1],M)× E | γ(0) = π(a)} → E, (γ, a) 7→ Pγ(a) := Pγ,a(1). (8.62)

It is left to prove that P satisfies the items 1 to 5 and 7 from definition 8.7. Item 6 is satisfied by construction.

7 Ordinary Differential Equations by V. I. Arnol’d, Page 241, Chapter 3, Section 27, Subsections 1-3
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Subproof (4. Reparametrization invariance). Let φ : [0, 1] → [0, 1] be a bijective smooth map that satisfies
φ(0) = 0 and φ(1) = 1. There exists δ > 0 such that φ[(φ−1(t) − δ, φ−1(t) + δ)] ⊆ (t − ϵ, t + ϵ). For every
r ∈ (φ−1(t)− δ, φ−1(t) + δ), the coefficient functions along γ ◦ φ satisfy

Γγ◦φ
(∂id,b◦γ◦φ)

m

n
(r) =

(
Γγ
(∂id,b◦γ)

m

n
◦ φ
)
(r) · φ′(r). (8.63)

This has the consequence that Pγ◦φ,a and Pγ,a ◦φ satisfy the same differential equation for each vector bundle
chart. For, if we multiply the equation for Pγ,a at φ(r)

(αm ◦ Pγ,a)
′
(φ(r)) + Γγ

(∂id,b◦γ)
m

n
(φ(r)) · (αn ◦ Pγ,a)(φ(r)) = 0, (8.64)

by φ′(r), then, by means of equation (8.63), we obtain

(αm ◦ Pγ,a ◦ φ)′ (r) + Γγ◦φ
(∂id,b◦γ◦φ)

m

n
(r) · (αn ◦ Pγ,a ◦ φ)(r) = 0, (8.65)

the same equation that is satisfied by Pγ◦φ,a. By uniqueness of the solution and since Pγ◦φ,a(0) = a = Pγ,a(0),
we conclude that Pγ◦φ,a = Pγ,a ◦ φ. Then also Pγ◦φ,a(1) = Pγ,a(1) and consequently Pγ◦φ(a) = Pγ(a).

Subproof (2. Path inversion). A special case of equation (8.63) is obtained when inspecting the path inverting
substitution φ : R → R, s 7→ 1− s. Then:

∀s ∈ (t− ϵ, t+ ϵ) : Γγ
(∂id,b◦γ)

m

n
(1− s) = −Γγ

(∂id,b◦γ)
m

n
(s). (8.66)

This ensures that under the substitution φ : R → R, s 7→ 1− s, the curve Pγ,a ◦ φ agrees with Pγ,Pγ,a(1) and
vice versa. Then, however, it is true that Pγ = P−1

γ .

Subproof (1. Linear isomorphism). As a corollary of the above subproof, it is established that Pγ : Eγ(0) →
Eγ(1) is a bijection. Furthermore, since on every interval contained in a vector bundle chart the solutions form
a vector space, together with the fact that we always succeed to cover the interval [0, 1] by a finite number of
intervals ([0, 1] is compact), the map Pγ : Eγ(0) → Eγ(1) is in particular a linear isomorphism.

Subproof (3. Path concatenation). We are essentially making use of equation (8.63) and making contact with
the conclusion of the subproof that proved reparametrization invariance.

Suppose we are given two smooth paths γ1 : [0, 1] → M and γ2 : [0, 2] → M such that γ1(1) = γ2(0) and
with the property that their ξ-path concatenation γ1 ξ∗ γ2 is also a smooth path. Define the smooth maps
µ1 : [0, 1] → [0, 1], s 7→ ξs and µ2 : [0, 1] → [0, 1], s 7→ ξ + (1− ξ) s. Observe that (γ1 ξ∗ γ2) ◦ µ1 = γ1
and (γ1 ξ∗ γ2) ◦ µ2 = γ2. Part of the conclusion from subproof 8.8.1 tells us that Pγ1

ξ∗γ2,a ◦ µ1 agrees with
Pγ1,a. Consequently, Pγ1

ξ∗γ2,a(ξ) = Pγ1,a(1) = Pγ(a). Analogously, we know that Pγ1
ξ∗γ2,a ◦ µ2 coincides with

Pγ2,Pγ1
(a). Finally,

Pγ1
ξ∗γ2

(a) = Pγ1
ξ∗γ2,a(1) = Pγ2,Pγ1

(a)(1) = (Pγ2
◦ Pγ1

) (a) (8.67)

follows.

Subproof (5. Smooth path dependence). Let U ∈ OM be an open set of M and let Ψ ∈ C∞(TU,U) be a
smooth map satisfying ∀p ∈ U : Ψ(0TpM ) = p. Note that for eachX ∈ TU , the map γX : [0, 1] → U, t 7→ Ψ(tX)
is a smooth path starting at πTM (X).

Let X ∈ TU and t ∈ [0, 1]. Let V ∈ OM be a neighbourhood of Ψ(tX), b1, . . . , bk be a local frame of E on
V and e1, . . . , eDim(M) be a local frame of TM on V . Denote by α ∈ B the vector bundle chart associated to
the local frame b1, . . . , bk. There exists a neighbourhood W ∈ OTU of X together with a constant ϵ > 0 such
that

∀Y ∈W : ∀s ∈ (t− ϵ, t+ ϵ) : Ψ(sY ) ⊆ V. (8.68)
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Then, for each Y ∈W we have the differential equation on the interval (t− ϵ, t+ ϵ)

ξm′(s) +
(
Γ(e,b)

m
ni

◦ γY
)
(s) · ξn(s) · ei (γ̇Y (s)) = 0 (8.69)

with variable constants depending smoothly on Y . Due to the smooth dependence on the initial conditions
and parameters8 (here Y ∈ W ), given some initial condition, e.g. ξm(t) = cm, the result ξ(s) ∈ Rk for some
s ∈ (t− ϵ, t+ ϵ) smoothly depends on Y ∈ TU and cm, as required. We can do this process for every t ∈ [0, 1].
Hence there exists an open cover V of M that covers the trajectory of γX : [0, 1] →M with the property that
for every V ∈ V there exists a local frame b1, . . . , bk of E over V and a local frame e1, . . . , eDim(M) of TM over
V . Since the closed interval [0, 1] is compact, there exists a finite subcover of V that does the job. Using this
subcover, we can glue together the individual intervals (t− ϵ, t+ ϵ) in order to conclude that PγX

(a) depends
smoothly on (X, a) ∈ TU ⊕ E|U .
Subproof (7. Initial uniqueness). Let γ : [0, 1] → M and δ : [0, 1] → M be two smooth paths such that
γ̇(0) = δ̇(0) and let a ∈ Eγ(0). We want to show that Ṗγ,a(0) = Ṗδ,a(0).

Note that π∗,aṖγ,a(0) = γ̇(0) = δ̇(0) = π∗,aṖδ,a(0) since Pγ,a and Pδ,a are sections along γ and δ, respectively.

Again, let U ∈ OM be a neighbourhood of γ(0) = δ(0) together with a local frame b1, . . . , bk of E over U and
a local frame e1, . . . , eDim(M) of TM over U . Denote by α ∈ B the vector bundle chart associated to the local
frame b1, . . . , bk.

Then the section Pγ,a along γ satisfies the equation

dαm
(
Ṗγ,a(0)

)
+
(
Γ(e,b)

m
ni

◦ γ
)
(0) · αn(a) · ei (γ̇(0)) = 0. (8.70)

Analogously, the section Pδ,a along δ satisfies the equation

dαm
(
Ṗδ,a(0)

)
+
(
Γ(e,b)

m
ni

◦ δ
)
(0) · αn(a) · ei

(
δ̇(0)

)
= 0. (8.71)

Now, since γ̇(0) = δ̇(0), it follows that dαm
(
Ṗγ,a(0)

)
= dαm

(
Ṗδ,a(0)

)
. However, Ṗγ,a(0) and Ṗδ,a(0) lie in

the same fibre TaE of πTE : TE → E. Finally,

Ṗγ,a(0) = Ṗδ,a(0), (8.72)

as desired.

Subproof (Y ∈ Γγ(E) parallelly transported iff ∇γ
∂id
Y = 0). Suppose Y ∈ Γγ(E) is parallelly transported

along a curve γ : (τ1, τ2) →M . By definition, for every t1, t2 ∈ (τ1, τ2) with t1 < t2 it holds that

Y (t2) = Pγt1→t2
(Y (t1)) , (8.73)

where we defined the smooth path γt1→t2 : [0, 1] → M, s 7→ γ (t1 + s (t2 − t1)). However, by definition of
P, the section Pγt1→t2 ,Y (t1) along γt1→t2 satisfies ∇γt1→t2

∂id
Pγt1→t2 ,Y (t1) = 0. Now, using the diffeomorphism

µ : [t1, t2] → [0, 1], t 7→ t−t1
t2−t1

we can establish that on the interval [t1, t2] it holds that

Y |[t1,t2] = Pγt1→t2
,Y (t1) ◦ µ. (8.74)

Remember that Pγt1→t2
satisfies ∇γt1→t2

∂id
Pγt1→t2

,Y (t1) = 0. Due to reparametrization invariance, we have

that ∇γ|[t1,t2]

∂id

(
Pγt1→t2

,Y (t1) ◦ µ
)

= 0. However, we have previously seen that Y |[t1,t2] = Pγt1→t2
,Y (t1) ◦ µ.

Substituting this expression leads us to the conclusion that on the interval [t1, t2] it holds that

∇γ
∂id
Y = 0. (8.75)

Since t1 < t2 were arbitrary, the conclusion is true for the entire interval (τ1, τ2). This concludes the proof
that if Y ∈ Γγ(E) is parallelly transported, then ∇γ

∂id
Y = 0.

8 Ordinary Differential Equations by V. I. Arnol’d, Page 97, Chapter 2, Section 7, Subsection 5
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s ◦ γ

γ∗E

Pγ,s(γ(0))

Eγ(0)

M

γ(0)

γ(1)γ

T
s(γ(0))

(
E
γ(0)
)

P
γ,s(γ(0))̇(0)

(s ◦ γ)̇(0)

J
s(γ(0))(∇

Xs)

T
s(γ(0))E

J−1
s(γ(0))

M

γ(0)

γ(1)

∇Xs

γX

s ◦ γ

Pγ,s(γ(0))

Figure 8.2: Construction of the covariant derivative operator induced by a parallel transport system.

The converse is satisfied by construction of the parallel transport system P.

Theorem 8.9. Let π : E →M be a vector bundle of rank k equipped with a parallel transport system P.
We can canonically construct a covariant derivative operator ∇ on π : E → M such that a section Y along a
curve γ : (t1, t2) →M is parallelly transported along γ if and only if ∇γ

∂id
Y = 0Γγ(E).

Proof 8.9. We define:

∇ : TM × Γ(E) → E, (X, s) 7→ J−1
s(πTM (X))

(
s∗[X]− Ls(πTM (X))(X)

)
, (8.76)

where Js(πTM (X)) : EπTM (X) → Ta(EπTM (X)) is the canonical isomorphism, and Ls(πTM (X)) : TπTM (X)M →
Ts(πTM (X))E is the linear map from lemma 8.6. We can apply J−1

s(πTM (X)) to s∗[X] − Ls(πTM (X))(X) ∈
Ts(πTM (X))E due to the fact that it is true that π∗ ◦ s∗(X) = X and π∗ ◦ Ls(πTM (X)) = X, see the last
part of the proof of lemma 8.6. This guarantees that s∗[X] − Ls(πTM (X))(X) is an element of the subspace

Ts(πTM (X))

(
EπTM (X)

)
, ensuring that we can apply J−1

s(πTM (X)) in order to obtain an element in the fibre EπTM (X).

Refer to fig. 8.2 for an exemplary illustration.

Observe that ∇Xs ∈ EπTM (X), so if we are given a vector field X ∈ Γ(TM) instead, then the map ∇Xs : p 7→
∇Xp

s defines a global section of π : E →M . What we need to prove is that ∇Xs is smooth, we will check this
towards the end of this proof.

First, however, let us check items 1 to 4 from definition 8.1. We start with items 1 and 2.

Subproof (Items 1 and 2). This is a corollary of lemma 8.6. The differential s∗,πTM (X) : TπTM (X)M →
Ts(πTM (X))E, the map Ls(πTM (X)) : TπTM (X)M → Ts(πTM (X))E from lemma 8.6 and the inverse of the canon-

ical isomorphism Js(πTM (X) : Ts(πTM (X))

(
EπTM (X)

)
→ EπTM (X) are linear maps.
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Before moving on to items 3 and 4, it is worth to rewrite ∇Xs in terms of a smooth path γX : [0, 1] →M that
satisfies γ̇X(0) = X:

∇ : TM × Γ(E) → E, (X, s) 7→ J−1
s(πTM (X))

(
(s ◦ γX) (̇0)− PγX ,s(πTM (X))̇(0)

)
. (8.77)

We can arrive at an even more useful expression by invoking lemma 8.7 given a vector bundle chart α of
π : E →M . Then, for every X ∈ π−1

TM [π[Dom(α)]] it holds that

∇X(s) = (π, α)−1
(
πTM (X), (α ◦ s ◦ γX)′(0)−

(
α ◦ PγX ,s(πTM (X))

)′
(0)
)
. (8.78)

This relation is particularly useful because we can directly make use of the addition of curves in Rk.

Subproof (Item 3). Suppose we are given two sections s1, s2 ∈ Γ(E). Then:

∇X(s1 + s2) = (π, α)−1
(
π(X), (α ◦ (s1 + s2) ◦ γX)

′
(0)−

(
α ◦ PγX ,s1(π(X))+s2(π(X))

)′
(0)
)
, (8.79)

where we have abusively abbreviated πTM by π and omitted the indices of the operations +Γ(E) and +Eπ(X)
.

First, note that for every t ∈ [0, 1], the value PγX ,s1(π(X))+s2(π(X))(t) is equal to the sum PγX ,s1(π(X))(t) +
PγX ,s2(π(X))(t), due to item 1 from definition 8.7. Subsequently, we can use the fibre-wise linearity of the

vector bundle chart α and calculus in Rk in order to deduce that

(α ◦ (s1 + s2) ◦ γX)
′
(0) = (α ◦ s1 ◦ γX)′(0) + (α ◦ s2 ◦ γX)′(0). (8.80)

In just the same fashion, we arrive at

(
α ◦

(
PγX ,s1(π(X)) + PγX ,s2(π(X))

))′
(0) =

(
α ◦ PγX ,s1(π(X))

)′
(0) +

(
α ◦ PγX ,s2(π(X))

)′
(0). (8.81)

Substituting these results in equation (8.79), and using once more the fibre-wise linearity of the vector bundle
chart α in order to arrive at the desired result

∇X

(
s1 +

Γ(E)
s2

)
= ∇Xs1 +

Eπ(X)

∇Xs2. (8.82)

Subproof (Item 4). Suppose we are given a section s ∈ Γ(E) and a smooth function φ ∈ C∞(M). Then:

∇X(φ · s) = (π, α)−1
(
π(X), (α ◦ (φ · s) ◦ γX)

′
(0)−

(
α ◦ PγX ,φ(π(X))·s(π(X))

)′
(0)
)
, (8.83)

The proof is very similar to the one of the above item. First, note that for every t ∈ [0, 1], the value
PγX ,φ(π(X))·s(π(X))(t) is equal to φ(π(X)) ·PγX ,s(π(X))(t), due to item 1 from definition 8.7. Subsequently, we

can use the fibre-wise linearity of the vector bundle chart α and calculus in Rk in order to deduce that

(α ◦ (φ · s) ◦ γX)′(0) = (φ ◦ γX)′(0) · α(s(γX(0))) + φ(γX(0)) · (α ◦ s ◦ γX)′(0) (8.84)

and (
α ◦

(
φ(π(X)) · PγX ,s(π(X))

))′
(0) = φ(π(X)) ·

(
α ◦ PγX ,s(π(X))

)′
(0). (8.85)

Substituting these results in equation (8.83), and using once more the fibre-wise linearity of the vector bundle
chart α in order to arrive at the desired result

∇X

(
φ ·

Γ(E)
s

)
= X(φ) ·

Eπ(X)

s(π(X)) +
Eπ(X)

φ(π(X)) ·
Eπ(X)

∇Xs. (8.86)
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Subproof (Smoothness). Let now X ∈ Γ(TM) be a vector field. We want to show that the map

∇Xs : M → E, p 7→ ∇Xp
s (8.87)

is smooth. Let p ∈M . Suppose x ∈ AM is a chart ofM at p such that x[Dom(x)] = RDim(M) and consider the
map Ψ(x) : T Dom(x) → Dom(x) from lemma 8.4 that satisfies the hypothesis of item 5 from definition 8.7.
For every X ∈ T Dom(x), define the smooth path (see lemma 8.4)

γ
(x)
X : [0, 1] →M, t 7→ Ψ(x)(tX). (8.88)

Let α : Dom(α) → Rk be a vector bundle chart at p. Without loss of generality, assume that x was chosen
such that Dom(x) ⊆ π[Dom(α)]. Then, for every Z ∈ T Dom(x) it holds that

∇Zs = (π, α)−1

(
πTM (Z), (α∗ ◦ s∗)[Z]−

(
α ◦ P

γ
(x)
Z ,s(πTM (Z))

)′
(0)

)
. (8.89)

The minuend (α∗◦s∗)[Z] depends smoothly on Z, since the differentials s∗ : TM → TE and α∗ : T Dom(α) →
Rk are smooth maps. The subtrahend

(
α ◦ P

γ
(x)
Z ,s(πTM (Z))

)′
(0) also depends smoothly on Z, this, however,

is less obvious to realize.

First, note that we can write

(
α ◦ P

γ
(x)
Z ,s(πTM (Z))

)′
(0) =

d

dt

∣∣∣∣
t=0

(
α ◦ Pr 7→Ψ(x)(rtZ) (s(πTM (Z)))

)
. (8.90)

The expression inside the brackets is checked to depend smoothly on Z ∈ T Dom(x) and t ∈ R thanks to
item 5 from definition 8.7, once we introduce the auxiliary smooth map

T Dom(x)× [0, 1] → T Dom(x)⊕ E|Dom(x), (Z, t) 7→ (tZ, s(πTM (Z))) . (8.91)

Then, however, its derivative with respect to t at t = 0 still depends smoothly on Z ∈ T Dom(x). Altogether,
this establishes that ∇Zs depends smoothly on Z ∈ T Dom(x). As a consequence, given the vector field
X ∈ Γ(TM) the map

∇Xs : M → E, p 7→ ∇Xp
s (8.92)

is smooth.

Subproof (Y ∈ Γγ(E) parallelly transported iff ∇γ
∂id
Y = 0). Let γ : (τ1, τ2) → M be a curve in M . Suppose

we are given a section Y ∈ Γγ(E) along γ that satisfies ∇γ
∂id
Y = 0Γγ(E). Fix t1, t2 ∈ (τ1, τ2) such that t1 < t2

and define the smooth path

γt1→t2 : [0, 1] →M, s 7→ γ(t1 + s(t2 − t1)). (8.93)

Let s ∈ [0, 1] and let α be a vector bundle chart at γt1→t2(s). There exits ϵ > 0 such that γt1→t2 [(s−ϵ, s+ϵ)] ⊆
π[Dom(α)]. By definition of ∇, we have that for any r ∈ (s− ϵ, s+ ϵ) it holds that

0Eγt1→t2
(r)

=
(
∇γ

∂id
Y
)
(µ(r)) = (π, α)−1

(
γ(r), (α ◦ Y ◦ µ)′(r)−

(
α ◦ Pγt1→t2

,Y (t1)

)′
(r)

)
, (8.94)

where we made use of the diffeomorphism µ : [0, 1] → [t1, t2], r 7→ t1 + (t2 − t1)r. Since α is an isomorphism
on the fibres, we have

(α ◦ Y ◦ µ)′ (r) =
(
α ◦ Pγt1→t2 ,Y (t1)

)′
(r). (8.95)

The ordinary differential equation implies that there exists Cs ∈ Rk such that

α ◦ Y ◦ µ(r) = α ◦ Pγt1→t2 ,Y (t1)(r) + Cs. (8.96)
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Since the closed interval [0, 1] is compact, we can repeat the same procedure on a finite number of such open
intervals that cover [0, 1]. Then, however, Y (t1) = Y (µ(0)) = Pγt1→t2

,Y (t1)(0) implies that the constants Cs

all vanish. Consequently,

Y (t2) = Y (µ(1)) = Pγt1→t2
,Y (t1)(1) = Pγt1→t2

(Y (t1)). (8.97)

This proves that Y is parallelly transported along γ.

The converse is true by construction of ∇. This concludes the proof.

Remark 8.3. The concepts of a covariant derivative operator and a parallel transport system are equivalent to
what is referred to as a linear connection on a vector bundle. The latter concept will not be introduced here.
However, it is common terminology to also refer to the equivalent concepts of covariant derivative operators and
parallel transport systems by the term linear connections. Technically, the third definition of a linear connection
that we omit here makes it easier to relate covariant derivatives with their principal bundle analogon, simply
called principal bundle connections, which enable us to talk about curvature on a principal bundle. This will
not be covered in this work. We will instead restrict ourselves to the study of curvature of covariant derivative
operators on vector bundles for reasons of brevity and practicability.

Remark 8.4. Unlike linear connections and covariant derivative operators, which can only be defined on vector
bundles, the concept of parallel transport systems may be generalized to affine bundles.

Sometimes linear connections are referred to as affine connections, refer to remark 8.1. This is misleading,
because it is assumed that they are defined on vector bundles.

Definition 8.9. Let π : E →M be a vector bundle equipped with a covariant derivative operator ∇.

There is a canonical way to extend the definition of ∇ to the tensor product bundles of π : E →M and its dual
bundle π∗ : E∗ →M . Beyond the items 1 to 4 from definition 8.1, we require two additional conditions in order
to uniquely define ∇ on each (r, s)-tensor product bundle.

5. For every two tensor fields S ∈ Γ(E(m,n)) and T ∈ Γ(E(r,s)), it holds that

∀X ∈ Γ(TM) : ∇X(S ⊗ T ) = ∇XS ⊗ T + S ⊗∇XT, (8.98)

where S ⊗ T ∈ Γ(E(m+r,n+s)) is the tensor product of S and T .

6. For every tensor field S ∈ Γ(E(m,n)) with m,n ≥ 1 it holds that

∀X ∈ Γ(TM) : Cm
n (∇XS) = ∇X (Cm

n (S)) , (8.99)

where Cm
n (S) ∈ Γ(E(m−1,n−1)) is the (m,n)-contraction of S.

7. On the (0, 0)-tensor product bundle, also known the algebra of smooth functions C∞(M), the covariant
derivative operator ∇ coincides with the differential d. That is, for every smooth function f ∈ C∞(M) it
holds that

∀X ∈ Γ(TM) : ∇Xf = (df)(X) = X(f). (8.100)

For reasons of brevity, we will omit the indices of the operators +, · and ⊗ for the remainder of this chapter.
It should be clear from the context which operation is meant. It is left as an exercise to the reader to trace the
indices of the operations at play.

Lemma 8.10. Definition 8.9 consistently defines a covariant derivative operator ∇ on the dual bundle π∗ : E∗ →
M .

Proof 8.10. For every section ω ∈ Γ(E∗) of the dual bundle π∗ : E →M , every section Y ∈ Γ(E) of the original
bundle π : E →M and every vector field X ∈ Γ(TM), it holds that

∇X

(
C1

1 (ω ⊗ Y )
)
= C1

1 (∇X (ω ⊗ Y )) , (8.101)

= C1
1 (∇Xω ⊗ Y + ω ⊗∇XY ) , (8.102)
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where we used items 5 and 6 from definition 8.9. The left hand side can be rewritten as ∇X(ω(Y )) where
ω(Y ) ∈ C∞(M) is a smooth function. By item 7 from definition 8.9, however, the left hand side can be written
as X(ω(Y )), where the vector field X ∈ Γ(TM) derives the smooth function ω(Y ). The right hand side, on the
other hand, can be rewritten as (∇Xω) (Y ) + ω (∇XY ). Altogether, this provides a definition of ∇ on Γ(E∗):

(∇Xω) (Y ) = X (ω(Y ))− ω (∇XY ) . (8.103)

Indeed, the above equation defines a section ∇Xω ∈ Γ(E∗): First, it is smooth due to the fact that the right
hand side is a smooth function for any choice of X ∈ Γ(TM) and Y ∈ Γ(E). Second, for every two sections
Y1, Y2 ∈ Γ(E), it holds that

(∇Xω) (Y1 + Y1) = X (ω(Y1 + Y2))− ω (∇X(Y1 + Y2)) , (8.104)

= X(ω(Y1)) +X(ω(Y2))− ω (∇X(Y1))− ω (∇X(Y2)) , (8.105)

= (∇Xω) (Y1) + (∇Xω) (Y2), (8.106)

where we used item 3 from definition 8.1 for ∇ on π : E → M . Third, for every section Y ∈ Γ(E) and every
smooth function φ ∈ C∞(M), it holds that

(∇Xω) (φ · Y ) = X (ω(φ · Y ))− ω (∇X(φ · Y )) , (8.107)

= X (φ) · ω (Y ) + φ ·X (ω(Y ))− ω (X (φ)Y − φ · ∇XY ) , (8.108)

= φ · (∇Xω) (Y ), (8.109)

where we used item 4 from definition 8.1 for ∇ on π : E →M . This concludes the proof that ∇Xω is indeed a
section of the dual bundle π∗ : E∗ →M by means of proposition 6.1.

It is left to show that ∇ satisfies the items 1 to 4 from definition 8.1 on the dual bundle π∗ : E∗ → M . This
can be directly read off from (8.103), bearing in mind that ∇ satisfies items 1 and 2 from definition 8.1 on
π : E →M . This concludes the proof that ∇ is a covariant derivative operator on π∗ : E∗ →M .

Lemma 8.11. Definition 8.9 consistently defines a covariant derivative operator ∇ on the (r, s)-tensor product
bundle π(r,s) : E(r,s) →M .

Proof 8.11. Let T ∈ Γ(E(r,s)) be a tensor field, X ∈ Γ(TM) a vector field, Y1, . . . , Ys ∈ Γ(E) sections of
π : E →M , and ω1, . . . , ωr ∈ Γ(E∗) sections of the dual bundle π : E∗ →M . Then:

∇X (T (ω1, . . . , ωr, Y1, . . . , Ys)) = (∇XT ) (ω1, . . . , ωr, Y1, . . . , Ys)

+ T (∇Xω1, . . . , ωr, Y1, . . . , Ys) + · · ·+ T (ω1, . . . ,∇Xωr, Y1, . . . , Ys)

+ T (ω1, . . . , ωr,∇XY1, . . . , Ys) + · · ·+ T (ω1, . . . , ωr, Y1, . . . ,∇XYs) ,

(8.110)

where we used items 5 and 6 from definition 8.9. By item 7 from definition 8.9, the left hand side can
be written as X (T (ω1, . . . , ωr, Y1, . . . , Ys)), where the vector field X ∈ Γ(TM) derives the smooth function
T (ω1, . . . , ωr, Y1, . . . , Ys) ∈ C∞(M). Using this relation, we provide a definition of ∇ on Γ(E(r,s)):

(∇XT ) (ω1, . . . , ωr, Y1, . . . , Ys) =X (T (ω1, . . . , ωr, Y1, . . . , Ys))

− T (∇Xω1, . . . , ωr, Y1, . . . , Ys)− · · · − T (ω1, . . . ,∇Xωr, Y1, . . . , Ys)

− T (ω1, . . . , ωr,∇XY1, . . . , Ys)− · · · − T (ω1, . . . , ωr, Y1, . . . ,∇XYs) .

(8.111)

Observe that the right hand side defines a smooth function on M . It is left as an exercise to the reader to check
that ∇XT is C∞(M)-linear in all its arguments. By proposition 6.1, this proves that ∇XT is indeed a section
of the (r, s)-tensor product bundle π(r,s) : E(r,s) →M .

It is now quickly verified that ∇ satisfies the items 1 to 4 from definition 8.1 on the (r, s)-tensor product bundle
π(r,s) : E(r,s) →M . This concludes the proof that ∇ is a covariant derivative operator on π(r,s) : E(r,s) →M .

62



Lemma 8.12. Suppose we are given an open set U ∈ OM together with a local frame b1, . . . , bk ∈ Γ(E|U ) of
π : E →M and a local frame e1, . . . , eDim(M) ∈ Γ(TU) of πTM : TM →M . Denote by b1, . . . , bk ∈ Γ(E∗|U ) the
dual frame of e1, . . . , ek.

The coefficient functions Γ∗
(e,b)

m

ni
of the covariant derivative operator ∇ on the dual bundle π∗ : E∗ →M with

respect to the local frame e1, . . . , eDim(M) for TM over U and the dual frame b1, . . . , bk for E over U satisfy

Γ∗
(e,b)

m

ni
= −Γ(e,b)

n
mi
. (8.112)

Proof 8.12. First, note that from the perspective of π∗ : E∗ → M , the dual frame b1, . . . , bk ∈ Γ(E∗|U ) of
e1, . . . , ek ∈ Γ(E|U ) is actually just a local frame. This is the reason why the indices appear to be in the wrong
places, once we write down the definition of the coefficient functions Γ∗

(e,b)
m

ni
:

Γ∗
(e,b)

m

ni
= (∇eib

n) (bm). (8.113)

The latter can be evaluated using (8.103). We find

(∇eib
n) (bm) = ei (b

n(bm))− bn (∇eibm) . (8.114)

The first term on the right hand side vanishes due to the fact that bn(bm) = δnm is constant on U . The second
term matches (up to the sign) the definition of the coefficient functions Γ(e,b)

n
mi

of ∇ on π : E → M with
respect to the local frame e1, . . . , eDim(M) for TM over U and the original frame b1, . . . , bk for E over U . This
leads us to the desired result

Γ∗
(e,b)

m

ni
= −Γ(e,b)

n
mi
. (8.115)

Corollary 8.13. For every vector field X ∈ Γ(TM) and every section s ∈ Γ(E∗) of the dual bundle π∗ : E∗ →
M it holds on U that

∇Xω =
(
X(ω(b)

m )− Γ(e,b)
n
mj
Xj

(e)ω
(b)
n

)
bm. (8.116)

Remark 8.5. Equation (8.112) from lemma 8.12 makes sure that the coefficient functions of ∇ on the dual
bundle π∗ : E∗ →M satisfy the transformation formula (8.22) from exercise 8.2 in their own right. This is easy
to observe: In order to change into the perspective from π∗ : E∗ →M , all we have to do is change the location
of indices, exchanging the notation of Bm

n with the one of Bm
n. Together with making use of the fact that

Bk
mB

n
k = δnm, this shows that equation (8.22) continues true for Γ∗

(e,b)
m

nj
, as required.

This is merely a consistency check that we have done everything right. Working this out in detail, however,
requires us to exercise caution from the conceptual point of view in order not to confuse ourselves. As such, it
is a worthy exercise.

Definition 8.10. Let π : E →M be a vector bundle of rank k equipped with a bundle metric g.

A covariant derivative operator ∇ on π : E →M is said to be metric-compatible with respect to g, or just
g-compatible, if for every vector field X ∈ Γ(TM) it holds that

∇Xg = 0. (8.117)

Theorem 8.14. Let π : E → M be a vector bundle of rank k equipped with a bundle metric g and a metric-
compatible covariant derivative operator ∇.

Let γ : (τ1, τ2) → M be a curve. For every two parallelly transported sections Y, Z ∈ Γγ(E) along γ, it holds
that

∇γ
∂id

((g ◦ γ) (Y, Z)) = 0. (8.118)

That is, (γ∗g) (Y,Z) is constant along γ.
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Proof 8.14. Using items 5 and 6 from definition 8.9, we deduce

∇γ
∂id

((g ◦ γ) (Y,Z)) =
(
∇γ

∂id
(g ◦ γ)

)
(Y,Z) + (g ◦ γ)

(
∇γ

∂id
Y,Z

)
+ (g ◦ γ)

(
Y,∇γ

∂id
Z
)

= 0,
(8.119)

Here we used the hypothesis that ∇γ
∂id
Y = 0 and ∇γ

∂id
Z = 0 (Y and Z are parallelly transported along γ) and

the metric-compatibility condition (8.117), which in terms of ∇γ
∂id

is expressed as

(
∇γ

∂id
(g ◦ γ)

)
(t) = ∇γ̇(t)g = 0, (8.120)

using equation (8.23) from proposition 8.2.

Corollary 8.15. Given two sections Y,Z ∈ Γ(E) that satisfy ∇XY = 0 and ∇XZ = 0 for every vector field
X ∈ Γ(TM) (or differently put, sections Y and Z whose corresponding sections Y ◦ γ and Z ◦ γ along γ are
parallelly transported along any curve γ : (τ1, τ2) → M), the function g(Y,Z) ∈ C∞(M) is constant on the
connected components of M .

64



9 Holonomy and curvature

Definition 9.1. Let π : E →M be a vector bundle equipped with a covariant derivative operator ∇. Denote
by P the parallel transport system induced by ∇ through theorem 8.8.

The holonomy group of ∇ at a point p ∈M is the subgroup

Hol∇(p) := {Pγ : Ep → Ep | γ is a piecewise smooth loop based at p} (9.1)

of the general linear group GL(Ep) over the fibre Ep.

Remark 9.1. Observe that Hol∇(p) is a subgroup of GL(Ep). It suffices to recall item 2 from definition 8.7 and
the result of lemma 8.3.

Definition 9.2. Let π : E →M be a vector bundle equipped with a covariant derivative operator ∇. Denote
by P the parallel transport system induced by ∇ through theorem 8.8.

The restricted holonomy group of ∇ at a point p ∈M is the subgroup

Hol∇0 (p) := {Pγ : Ep → Ep | γ is a contractible piecewise smooth loop based at p} (9.2)

of the general linear group GL(Ep) over the fibre Ep and is naturally a subgroup of the holonomy group Hol∇(p)
of ∇ at p.

Proposition 9.1. Let π : E → M be a vector bundle over M of rank k equipped with a covariant derivative
operator ∇ and let p, q ∈M be points in the same connected component of M .

Then the holonomy groups Hol∇(p) and Hol∇(q) at p and q, respectively, are isomorphic.

Proof 9.1. The smooth manifold (M,OM ,AM ) is by definition locally Euclidean and, as such, locally path-
connected. As a consequence, the connected components of M coincide with the path-connected components of
M . Therefore, there exists a (continuous, but not necessarily smooth) path γ : [0, 1] → M from p = γ(0) to
q = γ(1). It is, however, always possible to find a smooth path γ : [0, 1] → M from p to q. This is ultimately
due to the Whitney embedding theorem.9

Define the map
Lγ : Hol∇(p) → Hol∇(q), Pδ 7→ P(γ∗δ)∗γ , (9.3)

where γ : [0, 1] →M denotes the path inversion of γ. Indeed, for every piecewise smooth loop δ : [0, 1] →M at
p the path concatenation (γ ∗ δ) ∗ γ : [0, 1] →M is a piecewise smooth loop at p, too. Moreover, by item 3 from
definition 8.7, we have that

Lγ(Pδ) = Pγ ◦ Pδ ◦ Pγ . (9.4)

Combined with item 2 from definition 8.7, this proves that the map

Lγ : Hol∇(q) → Hol∇(p), Pϵ 7→ P(γ∗ϵ)∗γ = Pγ ◦ Pϵ ◦ Pγ (9.5)

is the inverse of Lγ .

9 Introduction to Smooth Manifolds (2nd edition) by J. M. Lee, Page 141, Theorem 6.26 (Whitney Approximation Theorem)
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Pγ(a)

γ(0)
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Eγ(0)

γ

Pγ,a

γ∗E

M

Figure 9.1: The restricted holonomy group Hol∇0
encompasses only the parallel transport along con-
tractible loops.

Pγ(a)

γ(0)

a

Eγ(0)

γ

Pγ,a

γ∗E

M

Figure 9.2: The holonomy group Hol∇ encompasses
also the parallel transport along non-contractible
loops.

It is left to show that Lγ is a homomorphism and thus an isomorphism. We have:

Lγ (Pϵ ◦ Pδ) = Pγ ◦ Pϵ ◦ Pδ ◦ Pγ , (9.6)

= Pγ ◦ Pϵ ◦ Pγ ◦ Pγ ◦ Pδ ◦ Pγ , (9.7)

= Lγ (Pϵ) ◦ Lγ (Pδ) , (9.8)

where we used items 2 and 3 from definition 8.7 once more.

Lemma 9.2. Let π : E →M be a vector bundle over M of rank k equipped with a covariant derivative operator
∇ and let p, q ∈M be a points. Suppose γ : [0, 1] →M is a piecewise smooth path from p to q.

We can find a path homotopy c : [0, 1]× [0, 1] →M from γ to a smooth path γ1 with the property that for every
r ∈ (0, 1], the path γr : [0, 1] →M, t 7→ c(r, t) is smooth. Moreover, the parallel transport Pγ(a) of a point a ∈ Ep

along γ is given by the limit

Pγ(a) = lim
r→0

Pγr (a). (9.9)

Proof 9.2. Suppose we are given a piecewise smooth path γ : [0, 1] → M with corners at the values 0 < r1 <
· · · < rm < 1. For every corner value ri ∈ (0, 1) choose a chart x(i) ∈ AM with convex domain x[Dom(x)].
There exist numbers ϵi > 0 such that γ[[ri − ϵi, ri + ϵi]] ⊂ Dom(x(i)). In particular, we may choose the ϵi small
enough such that the intervals [ri − ϵi, ri + ϵi] do not overlap.

Next, let us use a bump function in order to smoothen the corners out. To this end, we explicitly define for
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every δ > 0 the bump function

Ψδ : R → R, t 7→
{

1
Inδ

exp
(
− δ2

δ2−s2

)
for t ∈ (−δ, δ),

0 otherwise.
(9.10)

We can choose the normalization constant In such that
∫
R Ψδ(σ) dσ = 1. Now define for every corner i and

every δ ≤ ϵi
2 the map

γ̃i,δ :
(
ri −

ϵi
2
, ri +

ϵi
2

)
→ RDim(M), t 7→

ϵi
2∫

− ϵi
2

Ψδ·Ψ ϵi
2
(t−ri)(σ) · (x(i) ◦ γ)(t− σ) dσ. (9.11)

through a modulated convolution of (x(i) ◦ γ) with Ψδ.

Returning to the big picture, we can now define a path homotopy given by

c : [0, 1]× [0, 1] →M, (ξ, t) 7→
{
x−1
(i)

(
γ̃i,ξ· ϵi2 (t)

)
for ξ > 0 and t ∈

(
ri − ϵi

2 , ri +
ϵi
2

)
,

γ(t) otherwise.
(9.12)

It is not smooth on all of [0, 1]× [0, 1] but only on the open subset (0, 1]× [0, 1]. For every ξ ∈ (0, 1] the map

γξ : [0, 1] →M, t 7→ c(ξ, t) (9.13)

is a smooth path. It is time to recall the ordinary differential equation (8.69) from theorem 8.8 that characterizes
the parallel transport along the smooth paths γξ, where ξ ∈ (0, 1] is now treated as a parameter. Recall that
for every 1 ≤ i ≤ n we have the uniform convergence

lim
δ→0

γ̃i,δ = x(i) ◦ γ (9.14)

as functions from (ri − ϵi/2, ri + ϵi/2) to RDim(M). This fact together with the smooth dependence on the
parameter ξ ∈ (0, 1] leads us to the conclusion that for every a ∈ Ep we have the convergence

Pγ0
(a) = lim

ξ→0
Pγξ

(a) (9.15)

in Eq. This concludes the proof.

Definition 9.3. Let π : E →M be a vector bundle equipped with a covariant derivative operator ∇.

For every pair of vector fields X,Y ∈ Γ(TM), we can define a (1, 1)-tensor field R(X,Y ) ∈ Γ(E(1,1)), called the
curvature of ∇, characterized by its action on a section Z ∈ Γ(E) and a section ω ∈ Γ(E∗) of the dual bundle:

R(X,Y )(ω,Z) = ω
(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

)
. (9.16)

Lemma 9.3. The curvature R(X,Y ) is indeed a (1, 1)-tensor field over π : E →M .

Proof 9.3. Recall that for every section Z ∈ Γ(E) and every section ω ∈ Γ(E∗) of the dual bundle we have that

R(X,Y )(ω,Z) = ω
(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

)
(9.17)

is a smooth function. We can also immediately read off that R(X,Y ) is C∞(M)-linear in the first argument
ω ∈ Γ(E∗). It is left to show that R(X,Y ) is also C∞(M)-linear in its second argument Z ∈ Γ(E). This needs
a more elaborate calculation. First, suppose that W,Z ∈ Γ(E), then:

R(X,Y )(ω,W + Z) = ω
(
∇X∇Y (W + Z)−∇Y ∇X(W + Z)−∇[X,Y ](W + Z)

)
, (9.18)

= ω
(
∇X (∇YW +∇Y Z)−∇Y (∇XW +∇XZ)−∇[X,Y ]W −∇[X,Y ]Z

)
, (9.19)

= ω
(
∇X∇YW +∇X∇Y Z −∇Y ∇XW −∇Y ∇XZ −∇[X,Y ]W −∇[X,Y ]Z

)
, (9.20)

= R(X,Y )(ω,W ) +R(X,Y )(ω,Z), (9.21)
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where we used item 3 from definition 8.1 two consecutive times. Second, suppose that Z ∈ Γ(E) and φ ∈
C∞(M). Then:

R(X,Y )(ω, φ · Z) = ω
(
∇X∇Y (φZ)−∇Y ∇X(φZ)−∇[X,Y ](φZ)

)
, (9.22)

= ω (∇X (Y (φ) · Z + φ · ∇Y (Z))−∇Y (X(φ) · Z + φ · ∇X(Z))− [X,Y ](φ) · Z
−φ · ∇[X,Y ](Z)

)
, (9.23)

= ω (X(Y (φ)) · Z + Y (φ) · ∇X(Z) +X(φ) · ∇Y (Z) + φ · ∇X∇Y Z

−Y (X(φ)) · Z −X(φ) · ∇Y (Z)− Y (φ) · ∇X(Z)− φ · ∇Y ∇XZ

−[X,Y ](φ) · Z − φ · ∇[X,Y ](Z)
)
, (9.24)

= ω
(
φ · ∇X∇Y Z − φ · ∇Y ∇XZ − φ · ∇[X,Y ](Z)

)
, (9.25)

= φ ·R(X,Y )(ω,Z), (9.26)

where we used item 4 from definition 8.1 two consecutive times. Due to proposition 6.1, this proves that
R(X,Y ) ∈ Γ(E(1,1)) is a (1, 1)-tensor field over π : E →M .

Remark 9.2. Even though we have not made the appropriate extension of proposition 6.1 rigorous in details,
it should be stated that we can go beyond lemma 9.3 and identify R ∈ Γ(TM (0,2) ⊗ E(1,1)) as a section of
the tensor product bundle TM (0,2) ⊗ E(1,1) of the (0, 2)-tensor product bundle over πTM : TM → M and the
(1, 1)-tensor product bundle over π : E → M . All we have to do is prove that R(X,Y )(ω,Z) is C∞(M)-linear
in the arguments X ∈ Γ(TM) and Y ∈ Γ(TM).

Definition 9.4. A covariant derivative operator ∇ on a vector bundle π : E →M is said to be curvature-free
if for every two vector fields X,Y ∈ Γ(TM), the tensor field R(X,Y ) ∈ Γ(E(1,1)) vanishes.

Theorem 9.4. Let π : E →M be a vector bundle of rank k equipped with a covariant derivative operator ∇.

If the restricted holonomy group Hol∇0 (p) of ∇ is trivial at every point p ∈M , then ∇ is curvature-free.

Proof 9.4. Suppose p ∈M is a point. We will show that there exists a neighbourhood U of p on which R(X,Y )
vanishes for all X,Y ∈ Γ(TU).

There exists a chart x ∈ AM at p with the property that x(p) = 0 and x[Dom(x)] = RDim(M), thus satisfying
the hypothesis of lemma 8.4, which states that

Ψ(x) : TDom(x) → Dom(x), X 7→ x−1 (x(πTM (X)) + x∗(X)) (9.27)

is a smooth map. For every X ∈ TpM , define the smooth path

γ
(x)
X : [0, 1] →M, t 7→ Ψ(x)(tX). (9.28)

Furthermore, we define the map

χ : Dom(x) → TpM, q 7→ xi(q)

(
∂

∂xi

)

p

(9.29)

For every point q ∈ Dom(x), the smooth path γχ(q) agrees with [0, 1] → M, t 7→ x−1(tx(q)). Suppose now that

we are given a basis b̃1, . . . , b̃n ∈ Ep of the fibre Ep over p of π : E →M . For 1 ≤ i ≤ k, we can define the map

bi : Dom(x) → E, q 7→ P
γ
(x)

χ(q)

(
b̃i

)
, (9.30)

which is smooth due to the fact that Ψ(x) : T Dom(x) → Dom(x) satisfies the hypothesis of item 5 from
definition 8.7. This proves that bi : Dom(x) → E is a local section of π : E → M over Dom(x). By definition,
bi ◦ γχ(q) is parallelly transported along γχ(q). Furthermore, the collection b1(q), . . . , bk(q) ∈ Eq is a basis of the
fibre Eq over q due to item 1 from definition 8.7.
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Let q, q′ ∈ Dom(x) be two points and let δ : [0, 1] → Dom(x) be a smooth path from q to q′. We claim that
bi(q

′) = Pδ(bi(q)). First, note that the path concatenation (γχ(q) ∗ δ) ∗ γχ(q′) is a contractible piecewise smooth

loop based at p. By the hypothesis that the restricted holonomy group Hol∇0 (p) of ∇ at p is trivial, we conclude
that

idEp
= P(γχ(q)∗δ)∗γχ(q′)

= Pγχ(q′) ◦ Pδ ◦ Pγχ(q)
, (9.31)

where we made use of item 3 from definition 8.7. Using also item 2 from definition 8.7 then yields

Pγχ(q′) = Pδ ◦ Pγχ(q)
. (9.32)

Applying this equation to b̃i ∈ Ep proves the claim. Since this holds for an arbitrary smooth path δ : [0, 1] →M
from an arbitrary point q ∈ Dom(x) to an arbitrary point q′ ∈ Dom(x), this proves that bi ◦ δ is parallelly
transported along every curve δ : (τ1, τ2) → Dom(x). This concludes the proof that b1, . . . , bk ∈ Γ(E|Dom(x)) is
a parallelly transported local frame of π : E → M . Theorem 8.9 now establishes that ∇Xbi = 0 for any local
vector field X ∈ Γ(T Dom(x)).

Finally, let X,Y ∈ Γ(T Dom(x)) be local vector fields and let s ∈ Γ(E|Dom(x)) be a local section. On Dom(x),
we can write

s = si(b) · bi. (9.33)

A quick calculation yields

R(X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s, (9.34)

= ∇X

(
Y
(
si(b)

)
· bi
)
−∇Y

(
X
(
si(b)

)
· bi
)
− [X,Y ]

(
si(b)

)
· bi, (9.35)

= X
(
Y
(
si(b)

))
· bi − Y

(
X
(
si(b)

))
· bi − [X,Y ]

(
si(b)

)
· bi (9.36)

= 0, (9.37)

where we have applied item 4 from definition 8.1 multiple times, combined with the facts that ∇Xbi = 0,
∇Y bi = 0 and ∇[X,Y ]bi = 0. This concludes the proof.

Theorem 9.5. Let π : E →M be a vector bundle of rank k equipped with a covariant derivative operator ∇.

If ∇ is curvature-free, then its restricted holonomy group Hol∇0 (p) at a point p ∈M is trivial.

Proof 9.5. We only need to show that for any smooth contractible loop based at p γ : [0, 1] → M the parallel
transport Pγ(a) of any point a ∈ Ep along γ coincides with a. The same then holds for a piecewise smooth loop
based at p by lemma 9.2.

Suppose γ : [0, 1] → M is a smooth contractible loop based at p. By definition, there exists a path homotopy
c̃ : [0, 1] × [0, 1] → M from γ to the constant loop [0, 1] → M, t 7→ p. Both γ and the constant loop [0, 1] →
M, t 7→ p are smooth. Ultimately due to the Whitney embedding theorem it is always possible10 to find a
smooth path homotopy c : [0, 1]× [0, 1] →M from γ to the constant loop [0, 1] →M, t 7→ p.

Let b̃1, . . . , b̃k ∈ Ep be a basis of Ep. We can define a global frame of the pullback bundle c∗E. For every
1 ≤ i ≤ k, define

bi : [0, 1]× [0, 1] → E, (r, t) 7→ Pγr,b̃i
(t), (9.38)

where γr : [0, 1] →M, t 7→ c(r, t). Each bi is smooth due to the fact that [0, 1] is compact and due to the smooth
dependence of solutions to ordinary differential equations on its parameters, as discussed earlier already.

Likewise, suppose a ∈ Ep and define the smooth section along c given by

s : [0, 1]× [0, 1] → E, (r, t) 7→ Pγr,a(t). (9.39)

Our goal is to prove that Pγ(a) = s(0, 1) = a.

10 Introduction to Smooth Manifolds (2nd edition) by J. M. Lee, Page 142, Theorem 6.29
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First, note that by definition of s we implemented ∇c
∂id2

s = 0, so we have for the curvature that

(
∇c

∂id2
∇c

∂id1
s
)
(r, t) = R (c∗(∂id2)r,t, c∗(∂id1)r,t)︸ ︷︷ ︸

=0

s(r, t). (9.40)

However, by hypothesis, the right hand side vanishes. Expressing ∇c
∂id1

s in terms of the frame b1, . . . , bk as

(
∇c

∂id1
s
)
(r, t) =

(
∇c

∂id1
s
)i
(b)

(r, t) · bi(r, t) (9.41)

and using the fact that for each 1 ≤ i ≤ k it holds that ∇c
∂id2

bi = 0, we can rewrite (9.40) as

∂2

(
∇c

∂id1
s
)i
(b)

(r, t) · bi(r, t) = 0, (9.42)

providing an ordinary differential equation for each 1 ≤ i ≤ k:

∂2

(
∇c

∂id1
s
)i
(b)

(r, t) = 0. (9.43)

We conclude that (
∇c

∂id1
s
)i
(b)

(r, 1) =
(
∇c

∂id1
s
)i
(b)

(r, 0). (9.44)

By definition of s, however, the right hand side vanishes, leading us to the equation

(
∇c

∂id1
s
)
(r, 1) = 0. (9.45)

Define the smooth loop
δ : [0, 1] →M, r 7→ c(r, 1). (9.46)

As a matter of fact, δ is the constant loop based at p. So the map

b̂i : [0, 1] → E, r 7→ b̃i (9.47)

is a global frame of the pullback bundle δ∗E. Defining also the section along δ

ŝ : [0, 1] → E, r 7→ s(r, 1), (9.48)

equation (9.45) states precisely that ŝ is parallelly transported along δ

∇δ
∂id1

ŝ = 0. (9.49)

Using the fact that b̂i are parallelly transported along δ as well, this yields

∂1ŝ
i
(b̂)

= 0 (9.50)

But then ŝi
b̂
(1) = ŝi

b̂
(0). And so ŝ(1) = ŝ(0). Thus, by definition, s(1, 1) = s(0, 1). But γ1 : [0, 1] →M, t 7→ c(1, t)

is the constant path. By lemma 8.3, it holds s(1, 1) = s(1, 0) = a. Thus s(0, 1) = a, the desired result.

Remark 9.3. Theorem 9.4 and theorem 9.5 establish a light version of the Ambrose-Singer theorem.[AS53]
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10 The Global Geometry of Teleparallel Gravity

10.1 The relation to spin structures

In physics, a spacetime is usually defined as a four-dimensional connected smooth manifold equipped with a
Lorentzian bundle metric on the tangent bundle πTM : TM →M . Via the definition of a topological manifold,
we usually require a spacetime to be in particular Hausdorff and paracompact. For spacetimes, the Hausdorff
property implements distinguishability of different events. The paracompactness property is not an assumption
but rather follows from the existence of the Lorentzian metric g on πTM : TM → M . An accessible proof of
this result can be found in the Appendix of [Ger68].

Definition 10.1. A spacetime is a four-dimensional, connected, smooth manifold whose tangent bundle is
equipped with a Lorentzian bundle metric g ∈ Γ(TM (0,2)).

A spacetime can have further topological properties, such as compactness, simple-connectedness, orientabil-
ity, time-orientability, space-orientability, or different causality conditions, such as stable causality or global
hyperbolicity. Some of which we might want to assume or rule out.

For an in-depth discussion about the manifold topology of spacetimes refer to [GH79]. We will summarize
here some of the most important results. As a first step, we are interested in particular in orientability, time-
orientability and simply-connectedness.

Indeed, there are physical arguments that might justify to forbid spacetimes that are non-orientable from a
physical point of view. This does not apply to non-time-orientable though.

The argument sometimes brought forward in order to motivate the prohibition of non-time-orientable space-
times goes as follows: First, any physical observer perceives a time-orientation. And second, there should be
agreement between the different observers. On the first glance this argument appears convincing. However, it
is not clear how two observers with opposing time-orientations would even come to the conclusion that their
time-orientations do not agree. How could the two observers even communicate with each other, respecting
their respective time-orientations? One might falsely interpret the impossibility of such communication as an
indication in favour of time-orientability. There is also no inconsistency arising from the laws of fundamental
physics. For, if the first observer emits a particle then the second observer simply would interpret it as an anti-
particle, due to the CPT invariance of quantum field theory. It is also important to remember that entropy is
an observer-dependent concept, so there is no intrinsic way to determine the time-direction of another observer
or composed system. In conclusion, the above is not a proper justification of why to forbid non-time-orientable
spacetimes.

At least, there is some experimental support as to why to forbid non-orientable spacetimes. Suppose two
observers with agreeing time-orientations meet at an event A and separate. Later, at an event B, the first
observer sends a neutrino towards the second observer. The second observer detects the particle at an event C.
If the spacetime that harbours the observers were non-orientable, the chirality of the neutrino could invert, from
left-handed to right-handed chirality. Up to now, no right-handed neutrinos have been observed. Consequently,
as we accept the absence of right-handed neutrinos as a fundamental law of nature, the universe cannot be
non-orientable. For a more careful argument refer to pages 43 to 48 of Geroch’s PhD thesis [Ger67].
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We might prefer not to make any assumptions based on elementary particle physics. For this case, however, we
have a handy mathematical trick at hand that enables us to anyway assume some of these properties without
any harm done to the physical intactness of the theory.

Definition 10.2. Let (M,OM ,AM ) be a connected smooth manifold.

A covering manifold M̃ ofM is the the total space of a fibre bundle πcov : M̃ →M with fibre F a 0-dimensional
(smooth) manifold.

Remark 10.1. It is true that every connected smooth manifoldM admits a simply-connected covering manifold
M̃ . In fact, the latter is unique up to diffeomorphism and is called the universal covering manifold. Even
more is true.

On the one hand, if M comes endowed with the structure of a Lorentzian metric on its tangent bundle
πTM : TM → M , then there exists a unique Lorentzian metric on the tangent bundle πTM̃ : TM̃ → M̃ of

the universal covering manifold M̃ such that the smooth covering map πcov : M̃ → M is a local isometry.
(Indeed, we can simply pull back the (0, 2)-tensor g along πcov.)

On the other hand, if M is a connected Lie group G, then the universal covering manifold G̃ admits a unique
Lie group structure that makes the smooth covering map πcov : G̃ → G into a group homomorphism. We say
that G̃ is the universal covering group.

The idea is, whenever confronted with a spacetime M that is not simply-connected, to consider instead its
simply-connected universal covering manifold M̃ endowed with the pullback Lorentzian bundle metric πcov

∗g ∈
Γ(TM̃ (0,2)) along the smooth covering map πcov : M̃ → M . This idea is backed up by the argument that the
spacetimes M and M̃ cannot be distinguished by any local experiment.

In this manner, we can always find a simply-connected spacetime that serves us. It is important to point out
that this is merely a change of perspective, enabled by the fact that experiments can only be carried out locally.
It is a handy change of perspective nevertheless, at least from the mathematical point of view: Together with
the simply-connectedness of M̃ we also get orientability, time-orientability and space-orientability for free.

The orientability and time-orientability of M̃ come in particularly handy. For it enables us to reduce the struc-
ture group of the orthogonal frame bundle π̂ : Frg(TM) →M further from the pseudo-orthogonal group O(1, 3)
to the restricted Lorentz group SO+(1, 3). The latter is the connected component of the pseudo-orthogonal
group O(1, 3) that contains the identity and encompasses all proper orthochronous Lorentz transformations.
Interestingly, the restricted Lorentz group SO+(1, 3) is not simply-connected. The importance of this property
cannot be understated. If it were not for this, all of quantum field theory would work in a very different way.
Quantum field theory heavily uses the smooth covering homomorphism

ρ : SL(2,C) → SO+(1, 3) (10.1)

from the universal covering group SL(2,C) to the restricted Lorentz group SO+(1, 3). Physicists often like to
obfuscate this fact by treating representations of SL(2,C) as if they were representations of SO+(1, 3). This is
only partially true. It is true that a representation of SL(2,C) always gives rise to a projective representation of
SO+(1, 3) and only sometimes gives rise to a representation of SO+(1, 3). Indeed, we call a field an integer-spin
field if it transforms according to a representation of SL(2,C) that descends to a representation of SO+(1, 3), and
otherwise, a half-integer-spin field. Let us make this idea rigorous before moving on, with a slight generalization.

Suppose for a moment we were to allow different spacetime dimensions. The orthogonal frame bundle of
the a spacetime of dimension k ≥ 3 would have as its fibre the pseudo-orthogonal group O(1, k − 1). There
exists a direct generalization of the proper orthochronous Lorentz transformations that form the connected
component SO+(1, k − 1) of O(1, k − 1) that contains the identity element. SO+(1, k − 1) is connected and,
as it turns out, not simply-connected with non-trivial fundamental group11 given by either Z (for k = 3) or

11 See An Introduction to Geometrical Physics (2nd edition) by R. Aldrovandi and J. G. Pereira, Chapter 3, Section 3.2.2
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Z2 (for k ≥ 4).12 This leads us to conclude13 that for every k ≥ 3 the universal covering homomorphism
ρk : Spin(1, k − 1) → SO+(1, k − 1) is a double cover. The universal covering group of SO+(1, k − 1) is usually
referred to as the (1, k − 1)-spin group Spin(1, k − 1). Thus the definition:

Definition 10.3. Let π : E → M be an orientable vector bundle of rank k equipped with a time-orientable
Lorentzian bundle metric g ∈ Γ(E(0,2)).

A spin structure for g is a ρk-principal bundle homomorphism along idM from a Spin(1, k)-principal bundle

πSpin(1,k−1) : SpinFrg(E) →M (10.2)

over M to the structure group reduction

πSO+(1,k−1) : Frg(E)|SO+(1,k−1) →M (10.3)

of the orthogonal frame bundle to the connected component SO+(1, k − 1) of the pseudo-orthogonal group
O(1, k − 1) that contains the identity element. Here, ρk : Spin(1, k − 1) → SO+(1, k − 1) is the universal
covering homomorphism of SO+(1, k − 1).

The Spin(1, k − 1)-principal bundle πSpin(1,k−1) : SpinFr(E) → M is then called a spin frame bundle for
π : E →M with respect to g.

Remark 10.2. A vector bundle π : E → M of rank k equipped with a Lorentzian bundle metric g ∈ Γ(E(0,2))
may fail to admit a spin structure or may admit multiple inequivalent spin structures. Here, inequivalence is to
be understood in the sense that there may exist spin frame bundles ρ : P →M and ρ′ : P ′ →M for π : E →M
between which there does not exist a idSpin(1,k−1)-principal bundle isomorphism along idM .

Returning to the context of 4-dimensional spacetimes, we have the following definition, in full analogy to
definition 10.3.

Definition 10.4. A spin structure for an orientable and time-orientable spacetime (M, g) is a ρ-principal
bundle homomorphism along idM from a SL(2,C)-principal bundle

πSL(2,C) : SpinFrg(TM) →M (10.4)

over M to the structure group reduction

πSO+(1,3) : Frg(TM)|SO+(1,3) →M (10.5)

of the orthogonal frame bundle to the restricted Lorentz group SO+(1, 3), where ρ : SL(2,C) → SO+(1, 3) is
the universal covering homomorphism of SO+(1, 3).14

The SL(2,C)-principal bundle πSL(2,C) : SpinFr(TM) →M is then called a spin frame bundle for (M, g).

Remark 10.3. In full analogy to remark 10.2, it is true that a spacetime (M, g) may fail to admit a spin
structure or may admit multiple inequivalent spin structures. Much effort was investigated in the past to study
under which conditions a spacetime admits a spin structure.

Indeed, let us recall, without proof, the main theorem from [Ger68]:

Theorem 10.1. A non-compact spacetime admits a spin structure if and only if it admits a global orthonormal
frame.

12 See Lie Groups, Lie Algebras, and Representations (2nd edition) by B. Hall, Chapter 13, Proposition 13.10 in combination
with Section 13.3

13 Supersymmetry for Mathematicians: An Introduction by V. S. Varadarajan, Chapter 5, Page 200, Theorem 5.4.7
14 Compare with the definitions found in [Mil63], [Lic68] and [Pen68].
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For the proof of theorem 10.1 refer to [Ger68]. An immediate corollary following from the combination of
theorem 10.1 with theorem 9.4 is the following:

Corollary 10.2. A non-compact spacetime that admits a spin structure also admits a curvature-free metric-
compatible covariant derivative operator ∇.

In [HS79], considered one of the first works on teleparallel gravity, a Weitzenböck connection is characterized as
a curvature-free metric-compatible covariant derivative operator on the tangent bundle πTM : TM →M of the
spacetime (M, g). Corollary 10.2 hence tells us that every non-compact spacetime (M, g) with spin structure
admits a description in terms of teleparallel gravity.

This leaves us with the question as to whether our universe is non-compact.

As it turns out, there are arguments for why compact spacetimes are rarely considered, based on assumptions
about the causal structure of a spacetime. Indeed, a stably causal15 spacetime cannot be compact.16 See also
the discussion in [HE73]. On the other hand, stable causality by itself is another matter of discussion: A stably-
causal spacetime is necessarily time-orientable. However, in the paragraph that discussed the time-orientability
we concluded that we cannot rule out the possibility of non-time-orientability altogether. Although we have
seen that the universal covering of a spacetime is time-orientable, it does not seem particularly useful to discuss
the causality of the universal covering of a spacetime instead of the causality of a spacetime itself. There is,
however, once more a handy mathematical trick: It turns out that the universal covering of a spacetime is
non-compact.17 Consequently, we have the following result:

Corollary 10.3. If the universal covering (M̃, g̃) of a spacetime (M, g) admits a spin structure then it also
admits a curvature-free metric-compatible covariant derivative operator ∇̃.

A question that remains is whether or not we can find a curvature-free metric-compatible covariant derivative
operator on the spacetime (M, g) itself. The answer is in general no, since the induced global orthonormal frame
ẽ1, . . . , ẽDim(M) is not necessarily the lift of any global orthonormal frame e1, . . . , eDim(M).

In any case, if the spacetime in question is simply-connected, it is its own universal covering and we have the
following simplified situation:

Corollary 10.4. A simply-connected spacetime admits a spin structure if and only if it admits a curvature-free
metric-compatible covariant derivative operator.

Indeed, the inverse direction is due to the fact that a Weitzenböck connection defines an absolute parallelism if
the spacetime is simply-connected, a direct consequence of theorem 9.5.

15 This terminology is due to Stephen Hawking. See [Haw69].
16 This result is due to E. H. Kronheimer and R. Penrose. See [KP67].
17 It suffices to employ the following argument. Take the Euler characteristic of a manifold M given by

χ(M) =

Dim(M)∑
p=0

(−1)−p Dim (Hp(M))

as defined by [MS74] in terms of the dimensions of the cohomology groups of M . If M is compact and orientable, Poincaré duality
(Theorem 11.10 from [MS74]) tells us that for every 0 ≤ p ≤ Dim(M) we have the equivalence

Hp(M) ∼= HDim(M)−p(M).

In turn, de Rham duality (Theorem 18.14 from [Lee13]) enables us to substitute the cohomology group Hp(M) by the de Rham
cohomology group Hp

dR(M). The Euler characteristic of any four-dimensional compact orientable smooth manifold can thus be
calculated according to

χ(M) = 2Dim
(
H0

dR(M)
)
− 2Dim

(
H1

dR(M)
)
+Dim

(
H2

dR(M)
)
.

Now, a compact connected simply-connected smooth manifold M has Dim
(
H0

dR(M)
)
= 1 (M has one connected component) and

Dim
(
H1

dR(M)
)
= 0 (M is simply-connected). Consequently, M has Euler characteristic χ(M) ≥ 2. Suppose the universal covering

(M̃, g̃) of a spacetime (M, g) were compact. Then χ(M̃) ≥ 2. However, since M̃ is simply-connected it is true that (M̃, g̃) is
time-orientable. There exists a no-where vanishing vector field on M̃ . The Poincaré-Hopf theorem [Hop27] implies that χ(M̃) = 0.
A contradiction. This proves that the universal covering of a spacetime is non-compact.
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10.2 From general relativity to teleparallel gravity

Until now we have not mentioned the torsion of a covariant derivative operator at all. We postponed its
definition intentionally this far in order to highlight the fact that torsion is a property that is exclusive to
covariant derivative operators that are defined on a vector bundle π : E →M that is vector-bundle-isomorphic
to the tangent bundle πTM : TM →M of the base manifold M :

Definition 10.5. Let M be a smooth manifold whose tangent bundle πTM : TM → M is equipped with a
covariant derivative operator ∇. The torsion of ∇ is the (1, 2)-tensor field

T : Γ(T ∗M)× Γ(TM)× Γ(TM) → C∞(M), (ω,X, Y ) 7→ ω (∇XY −∇YX − [X,Y ]) . (10.6)

Observe that torsion can only be defined for covariant derivative operators defined on tangent bundles.

Traditionally speaking, the only fame of the torsion tensor is due to the fact that it is usually required to vanish.
This the case of General Relativity but not exclusively. The field of Riemannian geometry also usually employs
the unique (and always existing) torsion-free metric-compatible covariant derivative operator, also known as
Levi-Civita covariant derivative operator.

The original subject of teleparallel gravity is to choose an alternative metric-compatible covariant derivative
operator: one that is curvature-free. As discussed in the preceding section, differently from the unique tor-
sion-free metric-compatible covariant derivative operator that always exists, a curvature-free metric-compatible
covariant derivative operator may fail to exist. This is the case for all non-parallelizable spacetimes but not
exclusively.

An example is provided once more by the maximally extended Schwarzschild spacetime (M, g). It is parallelizable
and simply-connected as its underlying manifold is homeomorphic to S2×R2. Suppose there exists a curvature-
free metric-compatible covariant derivative operator ∇. Since M is simply-connected, the holonomy group
Hol∇(p) is trivial for any point p ∈ M . We thus can construct a global orthonormal frame using the parallel
transport system of ∇. However, no such global orthonormal frame can exist for the maximally extended
Schwarzschild spacetime. A contradiction. This proves by contradiction that there does not exist a curvature-
free metric-compatible covariant derivative operator for the maximally extended Schwarzschild spacetime. (The
geodesically-incomplete parts of the spacetime separated by the event horizon, referred to as interior and exterior,
both independently admit curvature-free metric-compatible, for they independently admit global orthonormal
frames.)

10.3 Ungeometrizing gravity

We suppose we are given a spacetime (M, g) together with a curvature-free metric-compatible covariant deriva-
tive operator ∇. On any simply-connected patch U ⊆M we may construct a parallelly-transported orthonormal
frame h1, . . . , hDim(M) ∈ Γ(TU). We will need the following definition:

Definition 10.6. Let U be an open set of M . A frame b1, . . . , bDim(M) ∈ Γ(TU) of TM over U is said to be
holonomic if for every 1 ≤ i, j ≤ Dim(M) the Lie-bracket

[bi, bj ] = 0 (10.7)

of bi and bj vanishes on all of U . By contrast, a frame that fails to be holonomic is said to be anholonomic.

If U is contractible, then a holonomic frame over U can be used to define coordinates on U by integration of
the coframe e1, . . . , eDim(M). This is part of the Poincaré lemma.18

Remark 10.4. Note that the notion of a holonomic frame has nothing to do with the holonomy group of a
covariant derivative operator.

18 The most general and complete exposition is likely found in Differential Forms and Applications by M. P. Do Carmo.
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This becomes particularly clear when we consider a parallelly transported frame e1, . . . , eDim(M) ∈ Γ(TU) with

respect to a curvature-free covariant derivative operator ∇. The restricted holonomy group Hol∇0 (p) vanishes
but this means in no way that e1, . . . , eDim(M) is a holonomic frame.

Definition 10.7. Let U be an open set of M and let b1, . . . , bDim(M) ∈ Γ(TU) be a frame of TM over U . For
every 1 ≤ i, j ≤ Dim(M), we can express the Lie-bracket of bi and bj as

[bi, bj ] = Ξ(b)
k
ij
· bk, (10.8)

where the functions Ξ(b)
k
ij
∈ C∞(U) are called the coefficients of anholonomy of b1, . . . , bDim(M).

On a small enough neighbourhood of any point p ∈M of spacetime it is possible to find a parallelly transported
orthonormal frame h1, . . . , hDim(M) ∈ Γ(TU) and a holonomic frame b1, . . . , bDim(M) ∈ Γ(TU). For, if x ∈ AM

is a chart at p with simply-connected domain Dom(x), then

∂

∂x1
, . . . ,

∂

∂xDim(M)
(10.9)

is a holonomic frame over Dom(M), and due to the fact that Dom(x) is simply-connected we can construct a
parallelly-transported orthonormal frame h1, . . . , hDim(M) over Dom(x).

We might ask whether it is possible to find such frames globally. We already established that if M is simply-
connected, then a parallelly-transported orthonormal frame exists globally. There also are obstructions to the
existence of a global holonomic frame. There even exist contractible four-dimensional smooth manifolds that do
not admit a global frame.19 If a spacetime admits a global chart x ∈ AM , then of course there exists a global
holonomic frame.

Suppose we are given an open set U ⊆M together with a parallelly transported orthonormal frame h1, . . . , hDom(M)

over U , and a holonomic frame b1, . . . , bDom(M) over U . We can express the orthonormal frame h1, . . . , hDim(M)

in terms of the holonomic frame b1, . . . , bDim(M) and the coframe h1, . . . , hDim(M) in terms of b1, . . . , bDim(M):

hi = hi
(b)jbj , hi = hi(b)jb

j . (10.10)

Where it holds that

hi(b)khj
(b)k = δij , (10.11)

by definition, and

g(hi, hj) = ηij , g(bi, bj) = hk(b)ih
l
(b)j

ηkl (10.12)

due to the fact that h1, . . . , hDim(M) is orthonormal. With respect to the fixed holonomic frame b1, . . . , bDim(M),
the component functions hi(b)j thus parametrize the Lorentzian bundle metric g locally. As such we can

formulate the dynamic equations of general relativity locally in terms of the component functions hi(b)j of the

cotetrad instead. It seems that the degrees of freedom were increased from 10 to 16, while we continue with
only 10 Einstein equations. Indeed, the component functions hi(b)j are not uniquely determined by the Einstein

equations. This is due to the fact that there exists a diverse family of component functions hi(b)j that give rise

to the same Lorentzian bundle metric g.

19 Let N be a contractible four-dimensional smooth manifold that is not homeomorphic to R4. (Such manifolds do exist. See
[Maz61] and [Koh21].) Suppose there exists a global holonomic frame b1, . . . , b4 on it with corresponding dual frame b1, . . . , b4.
Since N is contractible, the Poincaré lemma from [Do 94] ensures that the closed 1-forms b1, . . . , b4 are exact, thus providing a
global chart for N . However, N is not homeomorphic to R4. A contradiction.
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In the case that the spacetime (M, g) is such that we can find a parallelly transported orthonormal frame
h1, . . . , hDim(M) and a holonomic frame b1, . . . , bDim(M) globally, we can employ the following interesting inter-
pretation: We can regard the global holonomic frame b1, . . . , bDim(M) as an parallelly transported orthonormal
frame to a hypothetical gravity-free metric g̃. Locally, this frame provides Cartesian coordinates for the gravity-
free metric g̃.

In the case of the Schwarzschild spacetime we might regard the as background truth the holonomic frame given
by:

b0 =
∂

∂t
,

b1 = sin(θ) cos(ϕ)
∂

∂r
+

1

r
cos(θ) cos(ϕ)

∂

∂θ
− 1

r sin(θ)
sin(ϕ)

∂

∂ϕ
,

b2 = sin(θ) sin(ϕ)
∂

∂r
+

1

r
cos(θ) sin(ϕ)

∂

∂θ
+

1

r sin(θ)
cos(ϕ)

∂

∂ϕ
,

b3 = cos(θ)
∂

∂r
− 1

r
sin(θ)

∂

∂θ
,

(10.13)

where (t, r, θ, ϕ) are the Schwarzschild coordinates for the Schwarzschild metric

g =
(
1− rS

r

)
dt⊗ dt− 1

1− rS
r

dr ⊗ dr − r2
(
dθ ⊗ dθ + sin(θ)2 dϕ⊗ dϕ

)
, (10.14)

while being merely ordinary spherical coordinates for the gravity-free metric given by

g̃ = b0 ⊗ b0 −
3∑

i=1

bi ⊗ bi = dt⊗ dt− dr ⊗ dr − r2
(
dθ ⊗ dθ + sin(θ)2 dϕ⊗ dϕ

)
. (10.15)

A global orthonormal frame for the Schwarzschild metric is given by:

h0 =
1√

1− rS
r

∂

∂t
,

h1 =

√
1− rS

r
sin(θ) cos(ϕ)

∂

∂r
+

1

r
cos(θ) cos(ϕ)

∂

∂θ
− 1

r sin(θ)
sin(ϕ)

∂

∂ϕ
,

h2 =

√
1− rS

r
sin(θ) sin(ϕ)

∂

∂r
+

1

r
cos(θ) sin(ϕ)

∂

∂θ
+

1

r sin(θ)
cos(ϕ)

∂

∂ϕ
,

h3 =

√
1− rS

r
cos(θ)

∂

∂r
− 1

r
sin(θ)

∂

∂θ
.

(10.16)

The component functions hi
(b)j are in this case given by:

hi
(b)j =




1√
1− rS

r

0 0 0

0 1 + f(r) sin(θ)2 cos(ϕ)2 f(r) sin(θ)2 sin(ϕ) cos(ϕ) f(r) sin(θ) cos(θ) cos(ϕ)
0 f(r) sin(θ)2 sin(ϕ) cos(ϕ) 1 + f(r) sin(θ)2 sin(ϕ)2 f(r) sin(θ) cos(θ) sin(ϕ)
0 f(r) sin(θ) cos(θ) cos(ϕ) f(r) sin(θ) cos(θ) sin(ϕ) 1 + f(r) cos(θ)2


 , (10.17)

where

f(r) =

√
1− rS

r
− 1. (10.18)

We observe that in the case of the Schwarzschild metric, the holonomic frame b0, . . . , b3 can be continuously
(but not uniformly) transformed into the orthonormal frame h0, . . . , h3: It suffices to gradually increase the
Schwarzschild radius rS = GM

c2 , starting from 0 corresponding to the gravity-free case. With respect to the
reference frame b0, . . . , b3 we thus found a way to switch on gravity gradually.
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The worldlines of massive objects on which no other force acts continues to be given by the auto-parallelly
transported curves with respect to the Levi-Civita covariant derivative operator ∇∇ on TM :

∇∇γ
∂id
γ̇ = 0. (10.19)

We would like to alternatively use the curvature-free metric-compatible covariant derivative ∇ defined by the
global orthonormal frame h0, . . . , h3 through

∀0 ≤ i, j ≤ 3: ∇hi
hj = 0. (10.20)

In proposition 8.1 we have seen that there exists a tensor field K ∈ Γ(TM (1,2)) that satisfies

∇XY −∇∇XY = K(X,Y ). (10.21)

Using this relation, we may rewrite the equation of motion (10.19) of massive objects in the following way:

∇γ
∂id
γ̇ = K(γ̇, γ̇). (10.22)

The tensor field K is called the contorsion tensor. We may express this equation in terms of the holonomic
frame b0, . . . , b3.

To this end, let us first consider a more general setting. Let M be a smooth manifold with a Lorentzian
bundle metric g on the tangent bundle, a metric-compatible covariant derivative operator ∇, and a local frame
e1, . . . , eDim(M) ∈ Γ(TU). To get a rough overview, let us write down the components of the torsion tensor T
and the curvature tensor R of ∇. We have

T (ec, ea, eb) = ec (∇eaeb −∇ebea − [ea, eb])

= Γ(e)
c
ba

− Γ(e)
c
ab

− Ξ(e)
c
ab

(10.23)

for the torsion tensor and

R(ed, ea, eb, ec) = ed
(
∇ea∇ebec −∇eb∇eaec −∇[ea,eb]ec

)

= ed
(
∇ea

(
Γ(e)

m
cb
em
)
−∇eb

(
Γ(e)

m
ca
em
)
− Ξ(e)

m
ab
Γ(e)

n
cm
en
)

= ea

(
Γ(e)

d
cb

)
− eb

(
Γ(e)

d
ca

)
+ Γ(e)

d
ma

Γ(e)
m

cb
− Γ(e)

d
mb

Γ(e)
m

ca
− Ξ(e)

m
ab
Γ(e)

d
cm

(10.24)

for the curvature tensor. The metric-compatibility condition reads

0 = ec
(
g(e)ab

)
− Γ(e)

d
ac
g(e)db − Γ(e)

d
bc
g(e)ad. (10.25)

Now suppose that the local frame e1, . . . , eDim(M) is orthonormal and suppose that ∇ is metric-compatible.
Then (10.25) yields

Γ(e)
ba

c
= −Γ(e)

ab
c
. (10.26)

We can use this equation in order to arrive at a handy expression for the coefficient functions Γ(e)
c
ab
:

Γ(e)
c
ab

=
1

2

(
T(e)a

c

b
+ T(e)b

c

a
− T(e)

c
ab

+ Ξ(e)a
c

b
+ Ξ(e)b

c

a
− Ξ(e)

c
ab

)
. (10.27)

This expression holds in particular for the Levi-Civita covariant derivative operator ∇∇ as well as for a curvature-
free metric-compatible covariant derivative operator ∇, if existent. Suppose from now onwards that ∇ is a
curvature-free metric-compatible covariant derivative operator and that h1, . . . , hDim(M) ∈ Γ(TU) is a local
parallelly transported orthonormal frame. The components of the contorsion tensor with respect to this
frame then read

K(h)
c
ab

= −1

2

(
Ξ(h)a

c

b
+ Ξ(h)b

c

a
− Ξ(h)

c
ab

)
. (10.28)
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Given a local holonomic frame b1, . . . , bDim(M) ∈ Γ(TU), the coefficients of anholonomy of h1, . . . , hDim(M) may

be expressed in terms of the component functions hi
(b)j :

Ξ(h)
c
ab

=
(
ha

(b)k hb
(b)l − hb

(b)k ha
(b)l
)
bl
(
hc(b)k

)
. (10.29)

Equation (10.28) in terms of the component functions hi
(b)j is

K(h)
c
ab

=
1

2

((
ha

(b)k hb
(b)l − hb

(b)k ha
(b)l
)
bl
(
hc(b)k

)

− ηai η
cj
(
hj

(b)k hb
(b)l − hb

(b)k hj
(b)l
)
bl
(
hi(b)k

)

−ηbi ηcj
(
hj

(b)k ha
(b)l − ha

(b)k hj
(b)l
)
bl
(
hi(b)k

))
.

(10.30)

Its components with respect to the holonomic frame b1, . . . , bDim(M) are given by:

K(b)
l
mn

= hc
(b)l ha(b)m hb(b)nK(h)

c
ab

=
1

2

(
bn
(
hc(b)m

)
hc

(b)l − bm
(
hc(b)n

)
hc

(b)l

− ha(b)m hc
(b)l hj

(b)k ηai η
cj
(
bn
(
hi(b)k

)
− bk

(
hi(b)n

))

−hb(b)n hc
(b)l hj

(b)k ηbi η
cj
(
bm
(
hi(b)k

)
− bk

(
hi(b)m

))
.

(10.31)

We can finally write down the equation of motion (10.19) in terms of the component functions hi
(b)j alone:

γ̇m(b) bm

(
γ̇l(b)

)
bl + γ̇m(b) γ̇

n
(b) bm

(
hk(b)n

)
hk

(b)l bl

= −γ̇m(b) γ̇n(b) hb(b)n hc
(b)l hj

(b)k ηbi η
cj
(
bm
(
hi(b)k

)
− bk

(
hi(b)m

))
bl.

(10.32)

Back to the case of the Schwarzschild metric with global orthonormal frame h0, . . . , h3 and global holonomic

frame b0, . . . , b3, we may plug in the component functions hi
bj from equation (10.17) in order to obtain the

equation of motion in terms of the Schwarzschild coordinates t, r, θ and ϕ. Note that in this case the equation
that we obtain is the equation that characterizes auto-parallel curves with respect to the Levi-Civita covariant
derivative operator, expressed in the global chart20 x defined by the holonomic frame b0, . . . , b3. Indeed, the
second term on the left hand side of (10.32) together with the right hand side reproduce the value of the
coefficient functions of the Levi-Civita covariant derivative operator with respect to the global chart x, expressed

in terms of the component functions hi
(b)j .

10.4 Translation-group flavoured teleparallelism

So far so good about traditional teleparallel gravity. The second research line in teleparallel gravity is to try to
describe gravity as a gauge theory, in this case of the translation group R4. The beginning of this era is roughly
set by “Einstein Lagrangian as the translational Yang-Mills Lagrangian” by Y. M. Cho.

In the first part of this work we have seen that every principal bundle πT : P →M of the translation group R4

over the spacetime M is trivial. If one works within a framework where one wishes to establish an affine bundle
isomorphism

Φ: TM → P (10.33)

20 Even though the Schwarzschild spacetime is not contractible, there exists such a global chart. In fact, we defined the holonomic
frame b0, . . . , b3 in terms of the Schwarzschild coordinates t, r, θ and ϕ precisely in such a way that bi coincides with the differential
dxi of the Cartesian coordinate function xi, with respect to the gravity-free metric g̃.
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between the tangent bundle πTM : TM → M and the principal bundle πT : P → M of the translation group
R4, then it is implied that the tangent bundle πTM : TM → M is trivial as well. In other words, M needs to
be parallelizable.

In chapter 9, we had seen that a curvature-free metric-compatible covariant derivative operator ∇ on a simply-
connected spacetime provides a global orthonormal frame that parallelizes the tangent bundle.

In the previous section, we had discussed theorem 10.1 from which it follows that a non-compact spacetime M
with spin-structure admits a global orthonormal frame and hence is in particular parallelizable.

In this light, we conclude that the existence of an affine bundle isomorphism between the principal bundle
πT : P →M of the translation group R4 and the tangent bundle is no additional obstruction.

Time to dive deeper into translation-group flavoured teleparallel gravity. The framework of translation-group
flavoured teleparallel gravity is the following: Suppose we are given a smooth manifoldM together with a global
holonomic frame b1, . . . , bDim(M) ∈ Γ(TM). There exist various different Lorentzian bundle metrics g on the
tangent bundle πTM : TM → M . As we have seen, for many of them, but not necessarily all of them, there
exist a global orthonormal frame h1, . . . , hDim(M). Consider only those Lorentzian bundle metrics g that do
admit a global orthonormal frame. We may then express the global frame h1, . . . , hDim(M) in terms of the global

holonomic frame and the coframe h1, . . . , hDim(M) in terms of b1, . . . , bDim(M):

hi = hi
(b)jbj , hi = hi(b)jb

j . (10.34)

Where it holds that

hi(b)khj
(b)k = δij , (10.35)

by definition, and
g(hi, hj) = ηij , g(bi, bj) = hk(b)ih

l
(b)j

ηkl (10.36)

due to the fact that h1, . . . , hDim(M) is orthonormal. With respect to the fixed global holonomic frame, the
component functions hi(b)j thus parametrize the Lorentzian bundle metric g. As such we can formulate the

dynamic equations of general relativity in terms of the component functions hi(b)j of the cotetrad instead.

It seems that the degrees of freedom were increased from 10 to 16, while we continue with only 10 Einstein
equations. Indeed, the component functions hi(b)j are not uniquely determined by the Einstein equations. This

is due to the fact that there exists a diverse family of component functions hi(b)j that give rise to the same

Lorentzian bundle metric g.

We may decompose the component functions hi
(b)j in the following way:

hi
(b)j = δji +Bi

(b)j . (10.37)

Note that the δji happen to coincide with the component functions bi
(b)j of the holonomic frame b1, . . . , bDim(M)

expressed with respect to itself. The idea of the functions Bi
(b)j is thus to describe only the difference between

the global frame h1, . . . , hDim(M) and the global holonomic frame b1, . . . , bDim(M). In fact, for each 1 ≤ i ≤ 4
we have the global vector field

Bi = Bi
(b)jbj . (10.38)

Observe that the collection B1, . . . , BDim(M) is not required to define a frame.

At this point, it may look like a rather artificial construction to express the component functions hi
(b)j in terms

of Bi
(b)j . Now, however, suppose that we are given a principal bundle π : P → M of the translation group R4

over M together with a principal bundle connection, a Lie(R4)-valued 1-form on P

ω =

4∑

i=1

ωi ξ∗i , (10.39)
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where ωi are just ordinary 1-forms on P and ξ∗i are the generators of the Lie group R4. If π : E → M is a
vector bundle associated to π : P → M , then a covariant derivative on π : E → M is induced. In components
this looks like

(∇∇biψ) = bi(ψ
k)ek + βi

jξ∗j (ψ), (10.40)

where βi
j are the components of the Yang-Mills field and e1, . . . , ek is some local frame of the vector bundle

π : E → M . Now, teleparallel gravity uses the covariant derivative operator ∇∇ to parametrize the frame
h1, . . . , hDim(M), using the gauge potentials, which are identified with the component functions:

Bi
(b)j = βi

j . (10.41)

At his point, the generators ξ∗j are often forcefully identified with the derivations bj . (10.40) becomes

(∇∇biψ) = bi(ψ
k)ek + βi

jbj(ψ
k)ek, (10.42)

which for βi
j = Bi

(b)j yields

(∇∇biψ) = bi(ψ
k)ek +Bi

(b)jbj(ψ
k)ek = hi(ψ

k)ek. (10.43)

This makes it seem like we can interpret the derivations hi as a covariant derivative obtained from the derivations

bi, with Bi
(b)j the translational Yang-Mills field with respect to the local frame ek. This, however, is misleading:

First of all, a vector bundle cannot be associated to a principal bundle of the translation group R4 in first place.
And second, even if π : E → M were associated to the principal bundle π : P → M of the translation group
R4, then the identification of the generators ξ∗j with the derivations bi would be erroneous, for the action of the

generators ξ∗j on ψk is solely determined by the Lie group left action of R4 on the typical fibre of π : E → M .
It cannot yield something that depends on the neighbouring fibres, but the derivation bi does depend on the
neighbouring fibres and thus cannot be a suitable candidate.

In order to see that, let us suppose we are given a principal bundle π̂ : P → M over a spacetime M together
with an associated affine bundle π : E →M . Suppose ω ∈ Ω(P, T0(R4)) is a R4-valued 1-form on P , defining a
connection on the principal bundle π̂ : P → M . Given a local (or global) section σ : U → P of π̂ : P → M , we
can pull back the R4-valued 1-form ω onto the open subset U of M , obtaining a R4-valued 1-form σ∗ω defined
locally on U ⊆M .

β ∈ Ω(M,T0(R4)) (10.44)

is a T0(R4) ∼= R4-valued form on M , the Yang-Mills field.

What we can do is consider an affine bundle π : E → M associated to the principal bundle π : P → M of the
translation group R4. At this point we run into multiple problems.

• π : E → M is an affine bundle. It is not clear what the correct generalization of a covariant derivative
operator on an affine bundle should be. A straightforward generalization of the vector bundle case does
not exist since there are no appropriate versions of items 1 to 4. See also remark 8.1

• All the matter types known to date are represented by sections of vector bundles, may it be tensor fields
over the tangent bundle or sections of vector bundles associated to the spin frame bundle. Since none of
these vector bundles can be canonically associated to the principal bundle π̂ : P → M of the translation
group R4, the conclusion is that none of the fields living in them couple to the Yang-Mills fields of the
principal connection on π̂ : P →M .
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11 Conclusions

The geometric description of teleparallel gravity has sparked controversies between mathematicians [FHL19] and
physicists [PO19]. Aldrovandi and Pereira developed in [AP13] an alternative formalism for gravity, starting
from a Weitzenböck connection21 [HS79] towards a description in terms of the translation group T4. The
mathematicians criticize in [FHL19] that in order to equip the tangent bundle of a smooth manifold with the
structure of a principal bundle with respect to the action of the translation group, it is necessary that the
tangent bundle is trivial.

We confirmed this result from [FHL19] in theorem 4.3. Indeed, a spacetime whose frame bundle is non-trivial
cannot accommodate a translation-group structure. But how big of an obstruction is this for the applicability
of translation-group flavoured teleparallel gravity? We can answer this question in two complementary ways.

On the one hand, we can give an answer that is motivated by the primitive teleparallel gravity from [HS79] itself.
We have seen that a curvature-free metric-compatible covariant derivative on a simply-connected spacetime
provides a global orthonormal frame. But then the frame bundle of the underlying spacetime is trivial. So in
this case, there is no obstruction for equipping the tangent bundle with an action of the translation group. The
question that is left is which action of the translation group to choose and with which utility.

On the other hand, we may give a physical argument as to why there is no unreasonable obstruction. As
physicists, when we are given a spacetime, we are not directly interested in its orthogonal frame bundle but
instead we are interested in its spin frame bundle, if existent. This is because not every spacetime allows spinor
fields to be defined on it. Most physicists would agree that any sensible spacetime should allow spinor fields
to be definable. Geroch proved that a non-compact four-dimensional spacetime admits a spin-structure if and
only if there exists a global orthonormal frame [Ger68]. In this light, any physically sensible non-compact
spacetime admits a description in the framework of teleparallel gravity. In fact, a simply-connected (and non-
compact22) spacetime admits a spin structure if and only if there exists a curvature-free metric-compatible
covariant derivative for it. Nonetheless, there do exist spacetimes which do not admit a spin structure nor a
description in terms of teleparallel gravity. A rather prominent example is the maximally extended Schwarzschild
spacetime.

There are two important and interrelated questions left for future work to answer. First, how exactly do
we construct the translation-group structure for a given spacetime? And second, does this translation-group
structure properly define a principal bundle of the translation group?

At the present moment we do not have answers to any of the two questions, but we believe that the basis set
in this work paves part of the path towards a rigorous description of translation-group flavoured teleparallel
gravity.

21 In our dictionary, this corresponds to what we defined as a curvature-free metric-compatible covariant derivative operator.
22 See footnote 17 on page 74.
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A Point-set topology

Definition A.1 (Topological space). Let X be a set. A collection of subsets OX ⊆ P(X) is said to be a
topology for the set X if OX satisfies the following three following conditions:

(Top.1) Both ∅ and X are elements of OX . ∅, X ∈ OX

(Top.2) Closure with respect to arbitrary unions. ∀U ⊆ OX :
⋃U ∈ OX

(Top.3) Closure with respect to finite intersections. ∀U1, U2 ∈ OX :U1 ∩ U2 ∈ OX

The tuple (X,OX) is then said to compose a topological space. It is convention to refer to the elements of OX

as the open subsets of X. An open subset U ∈ OX that contains a point x ∈ X is called a neighbourhood
of x.

Remark A.1. Every point x ∈ X has a neighbourhood.

Definition A.2 (Topological basis). Let X be a set. A topological basis for X is a collection BX ⊆ P(X)
of subsets of X with such that

1. each point x ∈ X is contained in at least one element B ∈ B, and
2. for every two elements A,B ∈ BX and every point x ∈ A ∩ B there exists an element C ∈ BX such that
x ∈ C ⊆ A ∩B.

Proposition A.1. Let X be a set and BX a topological basis for X. The set

O(BX) := {A ∈ P(X) | ∀x ∈ A : ∃B ∈ BX : x ∈ B ⊆ A} (A.1)

is a topology for X, the topology generated by BX .

Proof A.1. Items (1) and (2) from definition A.1 are readily verified. Item (3) holds true as well. For, if
U, V ∈ O(BX) and x ∈ U ∩ V , by definition of O(BX), there exist basis elements A,B ∈ BX such that
x ∈ A ⊆ U and x ∈ B ⊆ V , respectively. Since BX is a topological basis, there exists an element C ∈ BX such
that x ∈ C ⊆ A ∩B. But then x ∈ C ⊆ U ∩ V . Hence U ∩ V ∈ O(BX).

Proposition A.2. Let (X,OX) be a topological space and BX ⊆ OX a collection of open subsets of X with
the property that for every open set U ∈ OX and every point x ∈ U there exists an element B ∈ BX satisfying
x ∈ B ⊆ U . Then BX is a topological basis for OX . Moreover, OX is the topology O(BX) generated by BX .

Proof A.2. First, let us prove item (1) of definition A.2. Let x ∈ X. By item (1) of definition A.1, we have that
X ∈ OX . By hypothesis, there exists an element B ∈ BX such that x ∈ B ⊆ X. Now, let us prove item (2)
of definition A.2. To this end, suppose A,B ∈ BX and x ∈ A ∩ B. By hypothesis, A,B ∈ OX . Since OX is a
topology, we have A ∩B ∈ OX . Hence there exists an element C ∈ BX such that x ∈ C ⊆ A ∩B.

Let U ∈ OX . By hypothesis, for every point x ∈ U there exists an element B ∈ BX such that x ∈ B ⊆ U .
Then, U ∈ O(BX), by definition of O(BX). Now, let U ∈ O(BX). Choose for every x ∈ U a basis element
Bx ∈ BX satisfying x ∈ Bx ⊆ U . Then U is the union {Bx | x ∈ U} of elements of OX . Since OX is a topology,
it follows that U ∈ OX .
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Remark A.2. Proposition A.1 and proposition A.2 prove that every topology OX for a set X is generated by
some topological basis BX for X.

Definition A.3 (Topological subbasis). Let X be a set. A collection SX ⊆ P(X) of subsets of X is said to
be a topological subbasis for X if every point x ∈ X is contained in some S ∈ SX .

Proposition A.3. Let X be a set and SX a topological subbasis. The collection B(SX) of finitie intersections
of elements of SX is a topological basis for X.

Proof A.3. Let x ∈ X. Then there exists S ∈ SX such that x ∈ S. However, S ∈ B(SX), being a finite
intersection of elements of SX . This proves item (1) of definition A.2. In order to prove item (2), it suffices
to note that any two elements A,B ∈ B(SX) are finite intersections of elements of SX . Then A ∩ B is a finite
intersection of elements of SX and as such is an element of B(SX).

Definition A.4 (Second countable space). A topological space (X,OX) is said to be second countable if
there exists a countable topological basis BX for X that generates OX .

Definition A.5 (Hausdorff space). A topological space (X,OX) is said to be Hausdorff if for every two
distinct points x, y ∈ X there exist two disjoint open subsets X,Y ∈ OX such that x ∈ X and y ∈ Y , i.e.,

∀x, y ∈ X : (x ̸= y =⇒ ∃U, V ∈ OX : (x ∈ U ∧ y ∈ V ∧ U ∩ V = ∅)) . (A.2)

Definition A.6 (Open cover). Let (X,OX) be a topological space. A collection of open sets U ⊆ OX is called
an open cover of the topological space (X,OX) if every point x ∈ X is contained in an element U ∈ U , i.e.,

X ⊆
⋃

U . (A.3)

Definition A.7 (Subcover of an open cover). Let (X,OX) be a topological space and U an open cover of
(X,OX). A subset V ⊆ U is said to be a subcover of U if it also an open cover of (X,OX).

Definition A.8 (Lindelöf space). A topological space (X,OX) is said to be Lindelöf if every open cover
admits a countable subcover.

Lemma A.4. A second countable space is Lindelöf.

Proof A.4. Let BX be a countable topological basis that generates OX and let U be an open cover of X. Define

I := {B ∈ B | ∃U ∈ U : B ⊆ K} . (A.4)

Note that for every B ∈ I there exists at least one U ∈ U such that B ⊆ U . The axiom of choice guarantees
the existence of a choice function f : I → U with the property that ∀B ∈ I : B ⊆ f(B). The image f [I] is a
(countable) subcover of U . For, if x is a point in X, there exists an open set U ∈ U such that x ∈ U , since U
is an open cover. In turn, there exists a basis element B ∈ BX such that x ∈ B ⊆ U . But then B ∈ I and,
consequently, x ∈ f(B).

Definition A.9 (Compact space). Let (X,OX) be a topological space. We say that (X,OX) is compact if
every open cover admits a finite subcover, i.e.,

∀U ⊆ OX :
(⋃

U ⊇ X =⇒ ∃V ⊆ U :
(⋃

V ⊇ X ∧ |V| ∈ N
))

. (A.5)

Definition A.10 (Refinement of an open cover). Let (X,OX) be a topological space and U be an open cover
of (X,OX). Another open cover V is said to be a refinement of U if every element V ∈ V is a subset of an
element U ∈ U , i.e.,

∀V ∈ V : ∃U ∈ U : V ⊆ U. (A.6)
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Remark A.3. A subcover V of an open cover U is a refinement of U .
Definition A.11 (Locally finite cover). Let (X,OX) be a topological space and U be an open cover of (X,OX).
We say that U is locally finite if for every x ∈ X there exists a neighbourhood W of x that has non-empty
intersection with only finitely many elements of the open cover U , i.e.,

∀x ∈ X : ∃W ∈ OX : (x ∈W ∧ |{U ∈ U | U ∩W ̸= ∅}| ∈ N) . (A.7)

Definition A.12 (Paracompact space). A topological space (X,OX) is paracompact if every open cover has
a locally finite refinement.

Proposition A.5. A compact space is paracompact.

Proof A.5. Let U be an open cover of a compact space (X,OX). By hypothesis there exists a finite subcover
V ⊆ U . Note that V is also a refinement of U .
For any point x ∈ X and any neighbourhood W of the point x, it holds true that W has non-empty intersection
with only finitely many elements of V, given that V is finite. We conclude that V is a locally finite refinement
of U . Hence, (X,OX) is paracompact.

Definition A.13 (Locally Euclidean space). A topological space (X,OX) is said to be locally Euclidean of
dimension d ∈ N if for every point x ∈ X, there exist a neighbourhood U of x, an open set V ∈ ORd , and a
homeomorphism σ : U → V , also called a chart at x.

Definition A.14 (Atlas). Let (X,OX) be a locally Euclidean space of dimension d ∈ N. An atlas for (X,OX)
is a collection A of charts whose domains cover X.

Lemma A.6. A locally Euclidean space (X,OX) of dimension d ∈ N with a countable atlas A is second
countable.

Proof A.6. We make use of the fact that Rd equipped with its standard topology ORd is second countable. Let
BRd be a countable basis that generates ORd , for instance the collection of open balls with rational radius r and
position c

BRd :=
{
{x ∈ Rd | ∥x− c∥ < r} | c ∈ Qd ∧ r ∈ Q

}
. (A.8)

We now define the set
BX :=

{
α−1[O] | (O,α) ∈ BRd ×A

}
. (A.9)

It is countable as the image of the cartesian product of the countable sets BRd and A. It is straightforward to
check that BX is indeed a topological basis that generates OX .

Corollary A.7. A locally Euclidean space is Lindelöf if and only if it is second countable.

Proof A.7. Any locally Euclidean space (X,OX) admits an atlas A. If (X,OX) is Lindelöf, then A can be
reduced to a countable atlas A′. Lemma A.6 then states that (X,OX) is second countable. The converse
direction was the subject of lemma A.4.

Definition A.15. Let (X,OX) be a topological space.

A path in X is a continuous map γ : [0, 1] →M . γ is also said to be a path from γ(0) to γ(1).

Definition A.16. Let (X,OX) be a topological space and p, q ∈ X points in X. Suppose γ0 : [0, 1] → X and
γ1 : [0, 1] → X are paths from p to q.

A path homotopy from γ0 to γ1 is a continuous map c : [0, 1]× [0, 1] →M that satisfies

∀t ∈ [0, 1] : c(0, t) = γ0(t) and c(1, t) = γ1(t), (A.10)

∀ξ ∈ [0, 1] : c(ξ, 0) = p and c(ξ, 1) = q. (A.11)

For every ξ ∈ [0, 1], the map γξ : [0, 1] →M, t 7→ c(ξ, t) is a path from p to q.
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Definition A.17. Let (X,OX) be a topological space and p ∈ X a point in X.

A path γ : [0, 1] → X from p to p is said to be a loop based at p.

Definition A.18. Let (X,OX) be a topological space and p ∈ X a point in X.

A loop γ : [0, 1] → X at p is said to be contractible if there exists a path homotopy c : [0, 1]× [0, 1] → X from
γ to the constant path δ : [0, 1] → X, t 7→ p.

Definition A.19. A topological space (X,OX) is said to be simply-connected if every loop in X is con-
tractible.

Definition A.20. A topological space (X,OX) is said to be contractible if there exists a continuous function
H : [0, 1]×X → X and a point y ∈ X such that for every x ∈ X it holds that H(0, x) = x and H(1, x) = y.
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B Algebra

Definition B.1. Let G be a set and • : G×G → G, (g, h) 7→ g • h a binary operation on G. We call (G, •) a
group if • satisfies:

(A•) Associativity of • on G ∀a, b, c ∈ G : a • (b • c) = (a • b) • c
(N•) Neutral element of • on G ∃e ∈ G : ∀a ∈ G : e • a = a = a • e
(I•) Inverse wrt. • on G ∀a ∈ G : ∃a−1 ∈ G : a−1 • a = e = a • a−1

Definition B.2. A group (G, •) is said to be abelian (or commutative) if the group operation • is commu-
tative, i.e. if:

(C•) Commutativity of • on G ∀g, h ∈ G : g • h = h • g

Definition B.3. Let (G, •) and (H,♦) be two groups.

A group homomorphism from G into H is a map φ : G → H that satisfies for every pair of elements
g1, g2 ∈ G the equation

φ (g1 • g2) = φ(g1) ♦ φ(g2). (B.1)

Definition B.4. Let R be a set and +: R×R→ R and · : R×R→ R be two binary operations on R.

The structure (R,+, ·) is said to be a ring with addition + and multiplication · if (R,+) is an abelian group
with neutral element denoted by 0 ∈ R and if + and · additionally satisfy:

(A·) Associativity of · on R ∀a, b, c ∈ G : a · (b · c) = (a · b) · c
(D+·) Left-distribution of · over + ∀a, b, c ∈ R : (a+ b) · c = a · c+ b · c
(D·+) Right-distribution of · over + ∀a, b, c ∈ R : a · (b+ c) = a · b+ a · c

Definition B.5. A ring (R,+, ·) is said to be unital if the multiplication · admits a multiplicative neutral
element, also called the unit element:

(N·) Multiplicative neutral element 1 of · on R ∃1 ∈ R : ∀a ∈ R : 1 · a = a = a · 1

Definition B.6. A ring (R,+, ·) is said to be commutative if the multiplication · is commutative:

(C·) Commutativity of · on R ∀a, b ∈ R : a · b = b · a

Exercise B.1. Convince yourself that the smooth functions (C∞(M),+, ·) on M form a unital commutative
ring.

Definition B.7. A commutative unital ring (K,+, ·) is said to be a field if:

(I·) Inverse wrt. · on K \ {0} ∀a ∈ K : ∃a−1 ∈ K : a−1 · a = 1 = a · a−1

Note that then (K \ {0}, ·) is an abelian group, too.

Definition B.8. Let (R,+, ·) be a ring, (A,⊕) an abelian group and ⊡ : R×A→ A a map. We call (A,⊕,⊡)
a module over the ring (R,+, ·) if the scalar multiplication ⊡ satisfies:
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A·⊡ Associativity between · and ⊡ ∀λ, µ ∈ R : ∀a ∈ A : (λ · µ)⊡ a = λ⊡ (µ⊡ a)

D⊡⊕ Distributivity between ⊡ and ⊕ ∀λ ∈ R : ∀a, b ∈ A :λ⊡ (a⊕ b) = (λ⊡ a)⊕ (λ⊡ b)

D+⊡ Distributivity between + and ⊡ ∀λ, µ ∈ R : ∀a ∈ A : (λ+ µ)⊡ a = (λ⊡ a)⊕ (µ⊡ a)

Definition B.9. Let (A,⊕,⊡) be a module over a unital commutative ring (R,+, ·). (A,⊕,⊡) is said to be
unital if it satisfies:

U ·⊡ Unit element 1 ∈ R as identity of scalar multiplication ⊡ ∀a ∈ A : 1⊡ a = a

Exercise B.2. Let (R,+, ·) be a commutative ring.

Show that (R,+, ·) is a module over the commutative ring (R,+, ·).

Remark B.1. Observe that vector space is nothing but a unital module over a field.

Definition B.10. Let (V,⊕V ,⊡V ) and (W,⊕W ,⊡W ) be two modules over the same commutative ring (R,+, ·).
A map L : V →W is said to be linear, or whenever confusion is possible, R-linear, if L : (V,⊕V ) → (W,⊕W )
is a group homomorphism and satisfies

∀v ∈ V : ∀λ ∈ R : L

(
λ⊡

V
v

)
= λ ⊡

W
L(v). (B.2)

Definition B.11. Let (V1,⊕V1
,⊡V1

), . . . , (Vr,⊕Vr
,⊡Vr

) and (W,⊕W ,⊡W ) be modules over the same commu-
tative ring (R,+, ·). A map L : V1 × · · · ×Vr →W is said to be multilinear, or whenever confusion is possible,
R-multilinear, if for every 1 ≤ s ≤ r and every v1 ∈ V1, . . . , vs1 ∈ Vs1 , vs+1 ∈ Vs+1, . . . , vr ∈ Vr, the map

L(v1, . . . , vs−1, ·, vs+1, . . . , vr) : Vr →W, vs 7→ L(v1, . . . , vs−1, vs, vs+1, . . . , vr) (B.3)

is linear. The set of R-multilinear maps from V1 × · · · × Vr to W is denoted by MultR(V1 × · · · × Vr,W ).

Definition B.12. The addition of multilinear maps is the operation

⊕
MultR(V1×···×Vr)(W )

: MultR(V1 × · · · × Vr,W )×MultR(V1,× · · · × Vr,W ) → MultR(V1 × · · · × Vr,W ),

(L,L′) 7→ L ⊕
MultR(V1×···×Vr,W )

L′,
(B.4)

where

L ⊕
MultR(V1×···×Vr,W )

L′ : V1 × · · · × Vr →W, (v1, . . . , vr) 7→ L(v1, . . . , vr) ⊕
W
L′(v1, . . . , vr). (B.5)

Definition B.13. The scalar multiplication of multilinear maps is the operation

⊡
MultR(V1×···×Vr)(W )

: R×MultR(V1,× · · · × Vr,W ) → MultR(V1 × · · · × Vr,W ),

(λ, L) 7→ λ ⊡
MultR(V1×···×Vr,W )

L,
(B.6)

where

λ ⊡
MultR(V1×···×Vr,W )

L : V1 × · · · × Vr →W, (v1, . . . , vr) 7→ λ ⊡
W
L(v1, . . . , vr). (B.7)

Exercise B.3. The set of multilinear maps MultR(V1×· · ·×Vr,W ) together with its addition⊕MultR(V1,×···×Vr,W )

and its scalar multiplication ⊡MultR(V1×···×Vr,W ) forms a module over (R,+, ·).
If V1, · · · , Vr and W are unital modules over a unital commutative ring, then so is MultR(V1 × · · · × Vr,W ).
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Definition B.14. Let (V,⊕,⊡) be a k-dimensional real vector space equipped with its canonical smooth
structure (in the sense that any linear isomorphism φ : V → Rk is a diffeomorphism). Let v ∈ V . For every
w ∈ V , the map

γvw : R →M, t 7→ v ⊕ t⊡ w (B.8)

is a (smooth) curve in V . The map
Jv : V → TvV, w 7→ γ̇vw(0), (B.9)

is called the canonical isomorphism between V and TvV .

Lemma B.1. The canonical isomorphism Jv : V → TvV is indeed a linear isomorphism.

Proof B.1. Denote by e1, . . . , ek ∈ V a basis of V and by e1, . . . , ek ∈ V ∗ its corresponding dual basis. The map

φ : V → Rk, v 7→
(
e1(v), . . . , ek(v)

)
(B.10)

is a global chart for V . As a consequence,

∂

∂e1

∣∣∣∣
v

, . . . ,
∂

∂ek

∣∣∣∣
v

(B.11)

is a basis of TvV . It holds that

dei (Jv(w)) = (ei ◦ γvw )̇(0)
= ei(w).

(B.12)

This proves that Jv : V → TvV is linear, injective and surjective. This concludes the proof that Jv : V → TvV
is a linear isomorphism.
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C Group actions

Let (G, •) be a group and X a set.

Definition C.1 (Left action (of a group on a set)). A map ▷ : G×X → X satisfying

∀x ∈ X : e ▷ x = x (LGA.1)

and
∀g1, g2 ∈ G : ∀x ∈ X : g2 ▷ (g1 ▷ x) = (g2 • g1) ▷ x (LGA.2)

is called a left G-action on X.

Definition C.2 (Right action (of a group on a set)). A map ◁ : X ×G→ X satisfying

∀x ∈ X : x ◁ e = x (RGA.1)

and
∀g1, g2 ∈ G : ∀x ∈ X : (x ◁ g1) ◁ g2 = x ◁ (g1 • g2) (RGA.2)

is called a right G-action on X.

Definition C.3 (Orbit of a point under a group action). If ▷ : G×X → X is a left action of G on X we define
for any point x ∈ X its orbit

Orb▷(x) := {y ∈ X | ∃g ∈ G : g ▷ x = y} ≡ G ▷ x. (C.1)

The latter notation is motivated by the fact that the orbit Orb▷(x) coincides with the range of the map
(▷x) : G → X, g 7→ g ▷ x. If ◁ : X × G → X is a right action of G on X we analogously define for any point
x ∈ X its orbit according to

Orb◁(x) := {y ∈ X | ∃g ∈ G : x ◁ g = y} ≡ x ◁ G. (C.2)

X

x

g1▷

g2▷

(g2 • g1)▷

e▷

Figure C.1: Defining property of a left action.

X

x

◁g1

◁g2

◁(g1 • g2)
◁e

Figure C.2: Defining property of a right action.
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Definition C.4 (Stabilizer of a point under a group action). If ▷ : G×X → X is a left action of G on X we
define for any point x ∈ X its stabilizer given by

Stab▷(x) = {g ∈ G | g ▷ x = x} = (▷x)−1 [{x}] . (C.3)

Note that Stab▷(x) is a subgroup of G due to (LGA.1) and (LGA.2). Analogously, if ◁ : X ×G→ X is a right
action of G on X we define the stabilizer of x ∈ X according to

Stab◁(x) = {g ∈ G | x ◁ g = x} = (x◁)−1 [{x}] . (C.4)

Definition C.5 (Effective group action). A left action ▷ : G×X → X of G on X is said to be effective if the
group identity e ∈ G is the only element that stabilizes every point x ∈ X, i.e., if

⋂

x∈X

Stab▷(x) = {e}. (C.5)

Analogously we say that a right action ◁ : X ×G→ X is effective if

⋂

x∈X

Stab◁(x) = {e}. (C.6)

Definition C.6 (Free group action). A left action ▷ : G × X → X of G on X is said to be free if for every
point x ∈ X the group identity e ∈ G is the only element that stabilizes the point x, i.e., if

∀x ∈ X : Stab▷(x) = {e}. (C.7)

Analogously we say that a right action ◁ : X ×G→ X is free if

∀x ∈ X : Stab◁(x) = {e}. (C.8)

Remark C.1. Note that a free group action is always effective. The converse is not true in general.

Definition C.7 (Transitive group action). A left action ▷ : G×X → X of G on X is said to be transitive if
any two points x, y ∈ X can be joined by the means of a group element g ∈ G in the sense that y = g ▷ x. This
is equivalent to the condition that the orbit of any (or equivalently, some) point x ∈ X coincides with X, that
is,

∀x ∈ X : X = Orb▷(x) = G ▷ x. (C.9)

Analogously, we say that a right action ◁ : X ×G→ X is transitive if

∀x ∈ X : X = Orb◁(x) = x ◁ G. (C.10)

Proposition C.1 (Free transitive group action induces bijection between group and set). Show that a transi-
tive transitive right action ◁ : X ×G→ X yields a bijection (x◁) : G→ X, g 7→ x ◁ x for any point x ∈ X.

Proof C.1. By the definition of what it means for ◁ to be transitive, it is clear that the map (x◁) : G → X is
surjective. Suppose now that for another point y ∈ X there exist two elements g, h ∈ G such that y = x◁g = x◁h.
Acting on y with the element g−1 yields on the one hand

y ◁ g−1 = (x ◁ g) ◁ g−1 (RGA.2)
= x ◁

(
g • g−1

)
= x ◁ e

(RGA.1)
= x, (C.11)

and on the other hand

y ◁ g−1 = (x ◁ h) ◁ g−1 (RGA.2)
= x ◁

(
h • g−1

)
. (C.12)

So x ◁
(
h • g−1

)
= x, that is, h • g−1 stabilizes x. Since ◁ is free, it follows that h • g−1 = e and thus h = g.

91



X

x0

x1 x2g▷

g▷ g▷

=⇒ g = e

Figure C.3: Defining property of an effective action.

X

x

g▷

=⇒ g = e

Figure C.4: Defining property of a free action.

X

x1

x2

g▷

∃g ∈ G : x2 = g ▷ x1

Figure C.5: Defining property of a transitive action.
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D Affine spaces

Let (V,⊕,⊡) be a vector space over a field (K,+, ·).

Definition D.1 (Affine space (modelled on a vector space)). A non-empty set A together with a free transi-
tive action ⊞ : A× V → A of the Abelian group (V,⊕) on A is said to be an affine space modelled on the
vector space (V,⊕,⊡). Note that ⊞ : A× V → A is a left and a right action for (V,⊕) is an Abelian group.

If (V,⊕,⊡) is a n-dimensional vector space over (K,+, ·), we also say that A is an n-dimensional affine space
over the field (K,+, ·). Note that the dimension is well-defined if finite. We usually denote an affine space
by the triple (A, V,⊞) formed by its underlying set A, the vector space V used to model it and its action ⊞.

Remark D.1 (Subtraction in an affine space). Let (A, V,⊞) be an affine space. Since ⊞ : A×V → A is free and
transitive, for any two points a, b ∈ A there exists a unique v ∈ V such that b = a ⊞ v. Let us call this vector
a⊟ b ∈ V . This defines an operation ⊟ : A×A→ V called the subtraction in A. Note that, by definition, for
any a, b ∈ A we have that b = a⊞ (b⊟ a). Furthermore, for any a, b, c ∈ A it holds that (c⊟ b)⊕ (b⊟a) = c⊟a.

Definition D.2 (Affine map (between affine spaces over a field (K,+, ·))). Let (A, A⃗,⊞A) and (B, B⃗,⊞B) be
affine spaces over the same field (K,+, ·).
We say that a map f : A → B is affine if there exists a linear map f⃗ : A⃗ → B⃗ such that for any a ∈ A and
a⃗ ∈ A⃗ it holds that

f

(
a⊞

A
a⃗

)
= f(a)⊞

B
f⃗ (⃗a). (D.1)

Note that if the above equality holds for some a ∈ A and all a⃗ ∈ A⃗, then it also holds for all a ∈ A.

Proposition D.1 (Composition of affine maps is affine). Let (A, A⃗,⊞A), (B, B⃗,⊞B) and (C, C⃗,⊞C) be affine
spaces over the same field (K,+, ·) and f : A → B and g : B → C affine maps. Then their composition
g ◦ f : A→ C is affine as well.

Proof D.1. Let a ∈ A and a⃗ ∈ A⃗. Since f : A→ B is affine, it holds that

f

(
a⊞

A
a⃗

)
= f(a)⊞

B
f⃗ (⃗a) . (D.2)

Since g : B → C is affine, it then follows that

(g ◦ f)
(
a⊞

A
a⃗

)
= g

(
f(a)⊞

B
f⃗ (⃗a)

)
= g(f(a))⊞

C
g⃗
(
f⃗ (⃗a)

)
. (D.3)

The composition g⃗ ◦ f⃗ : A⃗→ C⃗ of linear maps is linear. Hence, g ◦ f : A→ C is indeed an affine map.

Definition D.3 (Affine isomorphism (between affine spaces)). Let (A, A⃗,⊞A) and (B, B⃗,⊞B) be affine spaces
over the same field (K,+, ·). A bijective affine map f : A → B whose inverse f−1 : B → A is affine as well is
said to be an affine isomorphism.
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Proposition D.2 (Bijective affine map is affine isomorphism). Let (A, A⃗,⊞A) and (B, B⃗,⊞B) be affine spaces
over the same field (K,+, ·). A bijective affine map f : A→ B is an affine isomorphism.

Proof D.2. We will first show that f⃗ : A⃗→ B⃗ is a linear isomorphism. Since f : A→ b is affine, equation (D.1)

holds for any a ∈ A and any a⃗ ∈ A⃗. Now fix a ∈ A. Note that a⊞A : A⃗→ A and f(a)⊞B : B⃗ → B are bijections
due to problem C.1. Therefore the map

(
f(a)⊞

B

)−1

◦ f ◦
(
a⊞

A

)
: A⃗→ B⃗ (D.4)

is a bijection. This map, however, coincides with f⃗ : A⃗ → B⃗. A bijective linear map is a linear isomorphism.
As such, f⃗ : A⃗→ B⃗ is a linear isomorphism.

Now it remains to show that
−−→
f−1 : B⃗ → A⃗ coincides with the inverse f⃗−1 : B⃗ → A⃗. Let b ∈ B and b⃗ ∈ B⃗. Then:

f−1

(
b⊞
B
b⃗

)
= f−1

(
f
(
f−1(b)

)
⊞
B
b⃗

)
(D.1)
= f−1

(
f

(
f−1(b)⊞

A
f⃗−1(⃗b)

))
= f−1(b)⊞

A
f⃗−1(⃗b) (D.5)

We read off that
−−→
f−1 = f⃗−1, as claimed.

Remark D.2 (Linear isomorphism induces affine isomorphism). The above problem proves that there exists a

linear isomorphism f⃗ : A⃗ → B⃗ for any affine isomorphism f : A → B. The converse holds as well. Due to the
fact that we required the underlying sets A and B of the affine space to be non-empty, there exist a point a ∈ A
and a point b ∈ B. Then for any linear isomorphism l : A⃗→ B⃗ the map

l̃ : A→ B, a′ 7→ b⊞
B
f⃗

(
a′ ⊟

A
a

)
(D.6)

is, by definition, an affine isomorphism.

As a consequence, two finite-dimensional affine spaces over the same field belong to the same affine isomorphism
class if and only if their dimensions (the dimensions of the vector spaces that they are modelled on) coincide.

Remark D.3 (Representing an affine isomorphism class). If we do not care about the specific representative of
an affine isomorphism class, we can resort to a particularly convenient realization of this affine isomorphism
class. Suppose we are given an n-dimensional affine space (A, V,⊞) over a field (K,+, ·). The n-dimensionality
of the underlying vector space V over K is precisely defined in terms of the cardinality of any Hamel basis, which
establishes an isomorphism between V and Kn, the n-th tensor product of (K,+, ·) understood as a vector space
over itself.

Observe that the vector space addition ⊕ : Kn ×Kn → Kn in Kn as the group operation of the Abelian group
(Kn,⊕) is in particular a free and transitive action of (Kn,⊕) on itself. It is thus true that (Kn,Kn,⊕) is an
n-dimensional affine space over the field K.

Since there exists a linear isomorphism i⃗ : V → Kn, there also exists an affine isomorphism i : A→ Kn, by D.2.
Note that there is, however, no canonical such affine isomorphism.

We conclude that we can always represent the isomorphism class of n-dimensional affine spaces over a field
K by the representative Kn (regarded as an affine space over K). This is, however, not always conceptually
useful. This is due to the lack of a canonical affine isomorphism i : A→ Kn. As physicists we would like not to
distinguish an arbitrary point of a ∈ A with the property that i(a) = 0.

Definition D.4 (Affine combination). Let (A, V,⊞) be an affine space modelled on the vector space (V,⊕,⊡)
over a field (K,+, ·). Let a1, . . . , an ∈ A and λ1, . . . , λn ∈ K such that

∑n
i=1 λi = 1.
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The affine combination of the points (a1, . . . , an) with respect to the weights (λ1, . . . , λn) is the point
defined by (interpret the left hand side as a newly defined symbol)

⊞∑

i=1..n

λiai := o⊞
⊕∑

i=1..n

λi ⊡ (ai ⊟ o) , (D.7)

where o ∈ A is an arbitrary reference point. It is also called the barycentre of the points (a1, . . . , an) with
respect to the weights (λ1, . . . , λn). Observe that the left hand side is well-defined if and only if

∑n
i=1 λi = 1.

Proposition D.3 (Affine combination is well-defined). Let (A, V,⊞) be an affine space modelled on the vector
space (V,⊕,⊡) over a field (K,+, ·). Let a1, . . . , an ∈ A and λ1, . . . , λn ∈ K such that

∑n
i=1 λi = 1. Show that

the affine combination

⊞∑

i=1..n

λiai := o⊞
⊕∑

i=1..n

λi ⊡ (ai ⊟ o) (o ∈ A) (D.8)

is well-defined.

Proof D.3. Let o, o′ ∈ A. Then:

o′ ⊞
⊕∑

i=1..n

λi ⊡ (ai ⊟ o′)
D.1
= (o⊞ (o′ ⊟ o))⊞

⊕∑

i=1..n

λi ⊡ (ai ⊟ (o⊞ (o′ ⊟ o)))

= o⊞

(
(o′ ⊟ o)⊕

⊕∑

i=1..n

λi ⊡ (ai ⊟ o′)

)

= o⊞

((
n∑

i=1

λi

)

︸ ︷︷ ︸
=1

⊡ (o′ ⊟ o)⊕
⊕∑

i=1..n

λi ⊡ (ai ⊟ o′)

)

= o⊞
⊕∑

i=1..n

λi ⊡ ((ai ⊟ o′)⊕ (o′ ⊟ o))

D.1
= o⊞

⊕∑

i=1..n

λi ⊡ (ai ⊟ o)

(D.9)

Where we used in the second line that ⊞ : A×V → A is an action of the Abelian group (V,⊕) and in the fourth
line that the distributivity in the vector space (V,⊕,⊡).

Proposition D.4 (Affine map preserves the weights of an affine combination). Show that an affine map f : A→
B between affine spaces (A, A⃗,⊞A) and (B, B⃗,⊞B) satisfies

f

(
⊞A∑

i=1..n

λiai

)
=

⊞B∑

i=1..n

λif(ai), (D.10)

for any affine combination of points (a1, . . . , an) with respect to weights (λ1, . . . , λn).
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Proof D.4.

f

(
⊞A∑

i=1..n

λiai

)
def.
= f


o⊞

A

⊕A⃗∑

i=1..n

λi ⊡
A⃗

(
ai ⊟

A
o

)


= f(o)⊞
B
f⃗




⊕A⃗∑

i=1..n

λi ⊡
A⃗

(
ai ⊟

A
o

)


= f(o)⊞
B

⊕B⃗∑

i=1..n

λi ⊡
B⃗

f⃗

(
ai ⊟

A
o

)

= f(o)⊞
B

⊕B⃗∑

i=1..n

λi ⊡
B⃗

(
f(ai)⊟

B
f(o)

)

def.
=

⊞B∑

i=1..n

λif(ai)

(D.11)
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